Apostolos Syropoulos 366, 28th October Str. GR-671 00 Xanthi Greece email: asyropoulos@yahoo.com |
R.W.D. Nickalls Consultant in Anaesthesia & Intensive Care (retired) c/o Department of Anaesthesia Nottingham University Hospitals City Hospital Campus Hucknall Road Nottingham NG5 1PB, UK email:dick@nickalls.org |
mathspic is a graphics program which implements a simple programming notation, mathspic, suitable for the creation of diagrams or mathematical figures. mathspic's input is a LaTeX file containing mathspic plotting commands. mathspic's output is the equivalent LaTeX file containing PiCTeX plotting commands. Technically, therefore, mathspic is a preprocessor or `filter' for use with the PiCTeX drawing engine. mathspic was originally written in PowerBASIC 3.5, a DOS-based programming language. Since, many potential users are working in rather different programming environments, the authors thought of porting mathspic into another programming cross-platform language which would be widely available. The authors decided to rewrite mathspic in Perl since not only is Perl pretty stable, but it has extensive mathematical support.
Initially, we define a little package that is used to implement the loop
command. Then, we must do is to check the possible command line arguments.
Next, we process the input file.
If the user has used the -b
(see below), the program will `beep'
if any errors are found during processing.
We need some auxiliary subroutines in order to properly parse the input
file and of course to handle the various commands. We also need a
few global variables.
<*>= #!/usr/bin/perl # #(c) Copyright 2005-2010 # Apostolos Syropoulos & R.W.D. Nickalls # asyropoulos@yahoo.com dick@nickalls.org # # This program can be redistributed and/or modified under the terms # of the LaTeX Project Public License Distributed from CTAN # archives in directory macros/latex/base/lppl.txt; either # version 1 of the License, or any later version. # <package DummyFH > package main; use Math::Trig; <Define global variables> <subroutine definitions> <Check for command line arguments> <process file> print $alarm if $no_errors > 0; __END__
The package DummyFH
is used in the implementation of the loop
command.
It creates a dummy filehandle that is associated with an array of strings. Since
we only read data from this dummy filehandle, we implement the READLINE
subroutine.
When we read a line from this dummy filehandle, we actually requesting the next entry
of the array (if any). That is why we use the package variable $index
. When there
are no more entries in the array, subroutine READLINE
returns the value undef
so to falsify loop that controls the consumption of input from this dummy filehandle.
<package DummyFH >= (<-U) package DummyFH; my $index = 0; sub TIEHANDLE { my $class = shift; my $self= shift; bless $self, $class; } sub READLINE { my $self = shift; #shift @$self; if ($index > $#$self) { $index = 0; return undef; } else { return $self->[$index++]; } }
mathspic accepts at most four command-line switches, namely -b for enabling the beep, -s for automatic screen viewing of the output-file, -c for cleaning out all comment-lines, and -o with a following file-name for specifying the output file-name. mathspic requires the name of an existing input-file (the so-called mathspic-file) containing mathspiccommands. If no command-line arguments are supplied, we print a suitable usage message indicating the syntax. For each command-line argument we set a global variable. The default behavior is that the `bell' does not beep and comment-lines are not removed from the output-file.
<Check for command line arguments>= (<-U) our $alarm=""; our $comments_on=1; our $out_file="default"; our $argc=@ARGV; if ($argc == 0 || $argc > 5 ){ # no command line arguments or more than 4 # arguments die "\nmathspic version $version_number\n" . "Usage: mathspic [-h] [-b] [-c] [-o <out file>] <in file>\n\n"; } else { <Process command line arguments> print "This is mathspic version $version_number\n"; } <Check if .m file exists>
In order to get the various command-line arguments we use a simple
while
loop that checks each element of the array @ARGV
. We check
for all the switches, and we get the name of the input-file.
<Process command line arguments>= (<-U) our $file = ""; SWITCHES: while($_ = $ARGV[0]) { shift; if (/^-h$/) { die "\nThis is mathspic version $version_number\n" . "Type \"man mathspic\" for detailed help\n". "Usage:\tmathspic [-h] [-b] [-c] [-o <out file>] <in file>\n" . "\twhere,\n" . "\t[-b]\tenables bell sound if error exists\n" . "\t[-c]\tdisables comments in ouput file\n" . "\t[-h]\tgives this help listing\n" . "\t[-o]\tcreates specified output file\n\n"; } elsif (/^-b$/) { $alarm = chr(7); } elsif (/^-c$/) { $comments_on = 0; } elsif (/^-o$/) { die "No output file specified!\n" if !@ARGV; $out_file = $ARGV[0]; shift; } elsif (/^-\w+/) { die "$_: Illegal command line switch!\n"; } else { $file = $_; } }my ($xA, $yA, $xB, $yB, $dist)=@_; die "No input file specified!\n" if $file eq "";
In order to check whether the input-file exists, we simply use the
-e
operator. First we check to see if $file
exits.
If the input-file does exist then the variable $file
contains
the file name. In case the user has not specified an output
file, the default output file name is the name of the input file with
extension .mt
. Finally, the program outputs all error messages to
the screen and to a log file. The name of the log file consists of
the contents of the variable $file
and the extension .mlg
.
<Check if .m file exists>= (<-U) our ($source_file, $log_file); if (! -e $file) { die "$file: no such file!\n" if (! (-e "$file.m")); $source_file = "$file.m"; } else { $source_file = $file; $file = $1 if $file =~ /(\w[\w-\.]+)\.\w+/; } $out_file= "$file.mt" if $out_file eq "default"; $log_file= "$file.mlg";
Now that we have all the command line arguments, we can start processing
the input file. This is done by calling the subroutine process_input
.
Before that we must open all necessary files. Next,
we print some `header' information to the output file and to the log file.
<process file>= (<-U) open(IN,"$source_file")||die "Can't open source file: $source_file\n"; open(OUT,">$out_file")||die "Can't open output file: $out_file\n"; open(LOG,">$log_file")||die "Can't open log file: $log_file\n"; print_headers; process_input(IN,"");
In this section we define a few global variables. More specifically:
the variable $version_number
contains the current version number of the
program, the variable $commandLineArgs
contains the command line arguments.
These two variables are used in the print_headers
subroutine.
The variable $command
will contain the whole current input line.
Hash %PointTable
is used to store point names and related
information. Hash %VarTable
is used to store mathspic variable names
and related information, while the associative array %ConstTable
contains the
names of constants. Note that the values of both constants and variables are
kept in %VarTable
.
The variable $no_errors
is incremented whenever the
program encounters an error in the input file. The variables $xunits
,
$yunits
and $units
are related to the paper
command.
In particular, the variable $units
is used to parse the unit part of the
unit
part of the paper
command. The variable $defaultsymbol
is used to
set the point shape. The constant PI
holds the value of the mathematical
constant pi.
The constant R2D
holds the transformation factor to transform radians to
degrees. The constant D2R
holds the transformation factor
to transform degrees to radians, i.e., the value 1/R2D
. The global variables
$arrowLength
, $arrowAngleB
and $arrowAngleC
are actually parameters that
are used by the subroutines that draw arrows. Since $arrowLength
is actually
a length, variable $arrowLenghtUnits
holds the units of measure in which
this length is expressed. The hash table %DimOfPoint
contains the side or the
radius of a point whose plot-symbol is a square or a circle, respectively. In case the
default point symbol is a circle or a square, variable $GlobalDimOfPoints
is used
to store the length of the radius or the length of the side of default point symbol,
respectively. Variable $LineThickness
holds the current line thickness (the
default value is 0.4 pt).
<Define global variables>= (<-U) our $version_number = "1.13 Apr 26, 2010"; our $commandLineArgs = join(" ", @ARGV); our $command = ""; our $curr_in_file = ""; our %PointTable = (); our %VarTable = (); our %ConstTable = (); our $no_errors = 0; our $xunits = "1pt"; our $yunits = "1pt"; our $units = "pt|pc|in|bp|cm|mm|dd|cc|sp"; our $defaultsymbol = "\$\\bullet\$"; our $defaultLFradius = 0; use constant PI => atan2(1,1)*4; use constant R2D => 180 / PI; use constant D2R => PI / 180; our $arrowLength = 2; our $arrowLengthUnits = "mm"; our $arrowAngleB = 30; our $arrowAngleC = 40; our %DimOfPoint = (); our $GlobalDimOfPoints = 0; our @Macros = (); our $LineThickness = 0.4;
In this section we define the various subroutines that are needed in order to process the input file.
Subroutine mpp is a mathspic preprocessor that allows the definition and use of macros with or without arguments. For the moment it is an experimental feature and it should be used with care.
Subroutine PrintErrorMessage is used to print error messages to the screen, to the output file and to the log file.
Subroutine PrintWarningMessage is used to print warning messages to the screen, to the output file and to the log file.
Subroutine PrintFatalError is used to print an error message to the screen and to abort execution, where the error is considered fatal and not recoverable.
Subroutine chk_lparen checks whether the next input
character is a left parenthesis. Subroutine chk_rparen
checks whether the next input character is a right parenthesis. Subroutine
chk_comment checks whether a given command is followed by a trailing
comment. In the same spirit, we define the subroutines chk_lcb,
chk_rcb, chk_lsb, and chk_rsb which check for
opening and closing curly and square brackets respectively.
The subroutine chk_comma
checks whether the next token is a comma.
Subroutine print_headers
is used to print a header to the output file,
so a user knows that the file has been generated by mathspic.
Subroutine get_point
is used to parse a point name and to
check whether the point exists (i.e whether the point has been defined).
Subroutine perpendicular
is used to compute the coordinates of the
foot of perpendicular line from some point P to a line AB.
Subroutine Length
is used to compute the distance between two
points A and B.
Subroutine triangleArea
computes the area of a triangle defined
by three points.
Subroutine PointOnLine
is used to compute the coordinates of
a point on a line segment AB and a distance d units from A towards B.
Subroutine circumCircleCenter
takes six arguments that are the
coordinates of three points and computes the center of the circle that
passes through the three points which define the triangle.
Subroutine ComputeDist
is used to compute a numeric value that is
specified by either a variable name, a pair of points, or just a number.
Subroutine intersection4points
is used to compute the coordinates
of the point of intersection of two lines specified by the four arguments
(i.e. two arguments for each point).
Subroutine IncircleCenter
is used to compute the center and
the radius of a circle that touches internally the sides of a triangle,
the coordinates of the three points which define the triangle
being the arguments of the subroutine.
Subroutine Angle
determines the opening in degrees of an angle
defined by three points which are the arguments of this subroutine.
Subroutine excircle
computes the center and the radius of
a circle that externally touches a given side (4th and 5th arguments) of
triangle (determined by the 1st, the 2nd and the 3rd argument).
Subroutine DrawLineOrArrow
is used to parse the arguments of the commands
drawline
, drawthickline
, drawarrow
, drawthickarrow
and
drawCurve
.
Subroutine drawarrows
is used to draw one or more arrows between points.
Subroutine drawlines
is used to draw one or more lines between points.
Subroutine drawCurve
is used to draw a curve between an odd number of points.
Subroutine drawpoints
is used to draw the point symbol of one or more points.
Subroutine drawAngleArc
is used to draw an arc line within an angle.
Subroutine drawAngleArrow
is used to draw an arc line with an arrow on the end,
within an angle.
Subroutine expr
and subroutines term
, factor
and
primitive
are used to parse an expression that follows a variable
declaration.
Subroutine memberOf
is used to determine whether a string is a
member of a list of strings.
Subroutine midpoint
computes the midpoint of two points.
Subroutine tand
computes the tangent of an angle, where the
angle is expressed in degrees.
Subroutine get_string
scans a string in order to extract a
valid mathspic string.
Subroutine is_tainted
checks whether a string contains data that
may be proved harmful if used as arguments to a shell escape.
Subroutine noOfDigits
has one argument which is a number and
returns the number of decimal digits it has.
Subroutine drawsquare
has one argument which is the radius of point
and yields LaTeX code that draws a square.
Subroutine X2sp
can be used to transform a length to sp units.
Subroutine sp2X
can be used to transform a length expressed in sp units
to any other acceptable unit.
Subroutine setLineThickness
is used to determine the length of the
linethickness in the current paper units.
Subroutine process_input
parses the input file and any other file
being included in the main file, and generates output.
<subroutine definitions>= (<-U) <subroutine mpp > <subroutine PrintErrorMessage > <subroutine PrintWarningMessage > <subroutine PrintFatalError > <subroutine chk_lparen > <subroutine chk_rparen > <subroutine chk_lcb > <subroutine chk_rcb > <subroutine chk_lsb > <subroutine chk_rsb > <subroutine chk_comma > <subroutine chk_comment > <subroutine print_headers > <subroutine get_point > <subroutine perpendicular > <subroutine Length > <subroutine triangleArea > <subroutine pointOnLine > <subroutine circumCircleCenter > <subroutine ComputeDist > <subroutine intersection4points > <subroutine IncircleCenter > <subroutine Angle > <subroutine excircle > <subroutine DrawLineOrArrow > <subroutine drawarrows > <subroutine drawlines > <subroutine drawCurve > <subroutine drawpoints > <subroutine drawAngleArc > <subroutine drawAngleArrow > <subroutine expr > <subroutine memberOf > <subroutine midpoint > <subroutine tand > <subroutine get_string > <subroutine is_tainted > <subroutine noOfDigits > <subroutine drawsquare > <subroutine X2sp > <subroutine sp2X > <subroutine setLineThickness > <subroutine process_input >
Subroutine mpp is an implementation of a mathspic preprocessor that allows the definition of one-line macros with or without arguments. Macro definition has the following syntax:
@Macros
that contains all the macro information. Macro expansion is
more difficult and it will be described in detail in a separate document. At this point
we would like to thank Joachim Schneider <subroutine mpp >= (<-U) sub mpp { my $in_line; chomp($in_line = shift); my $LC = shift; my $out_line = $in_line; my $macro_name = ""; my @macro_param = (); my $macro_code = ""; if ($in_line =~ s/^%def\s*//) { if ($in_line =~ s/^(\w+)\s*//){ $macro_name = $1; } else { PrintErrorMessage("No macro name has been found",$LC); return "" } if ($in_line =~ s/^\(\s*//) { # do nothing } else { PrintErrorMessage("No left parenthesis after macro name has been found",$LC); return ""; } if ($in_line =~ s/^\)//) { # Macro has no parameters! } else { MACROS: while (1) { if ($in_line =~ s/^(\w+)\s*//) { push (@macro_param, $1); } else { PrintErrorMessage("No macro parameter name has been found",$LC); return ""; } if ($in_line =~ s/^,\s*//) { next MACROS; } else { last MACROS; } } if ($in_line =~ s/^\)//) { # do nothing! } else { PrintErrorMessage("No closing parenthesis after macro parameters",$LC); return ""; } } $in_line =~ s/([^%]+)(%.*)/$1/; $macro_code = $in_line; push ( @Macros , { 'macro_name' => $macro_name, 'macro_code' => $macro_code, 'macro_param' => \@macro_param }); return $out_line; } elsif ($in_line =~ s/^%undef\s*//) { if ($in_line =~ s/^(\w+)//) { my $undef_macro = $1; for(my $i = $#Macros; $i >= 0; $i--) { if ($Macros[$i]->{'macro_name'} eq $undef_macro) { splice(@Macros,$i,1); } } } return $out_line; } elsif ($in_line =~ s/^\s*%//) { return $out_line; } else { my $comment = $2 if $in_line =~ s/([^%]+)(%.+)/$1/; EXPANSIONLOOP: while () { my $org_in_line = $in_line; for(my $i = $#Macros; $i >= 0; $i--) { my $macro_name = $Macros[$i]->{'macro_name'}; if ($in_line =~ /&$macro_name\b/) { ############################ my $num_of_macro_args = @{$Macros[$i]->{'macro_param'}}; if ( $num_of_macro_args > 0 ) { # Macro with parameters my $pattern = "&$macro_name\\("; foreach my $p ( 1..$num_of_macro_args ) { my $comma = ($p == $num_of_macro_args) ? "\\s*" : "\\s*,\\s*"; $pattern .= "\\s*[^\\s\\)]+$comma"; } $pattern .= "\\)"; while($in_line =~ /&$macro_name\b/) { if ($in_line =~ /$pattern/) { my $before = $`; my $after = $'; my $match = $&; my $new_code = $Macros[$i]->{'macro_code'}; $match =~ s/^&$macro_name\(\s*//; $match =~ s/\)$//; foreach my $arg ( 0..($num_of_macro_args - 1) ) { my $old = $Macros[$i]->{'macro_param'}->[$arg]; my $comma = ($arg == ($num_of_macro_args - 1)) ? "" : ","; $match =~ s/^\s*([^\s,]+)\s*$comma//; my $new = $1; # 'g': Parameter may occur several times # in $new_code. # '\b': Substitute only whole words # not x in xA $new_code =~ s/\b$old\b/$new/g; } $in_line = "$before$new_code$after"; } else { PrintErrorMessage("Usage of macro &$macro_name does not " . "match its definition", $LC); return ""; } } } else { # Macro without parameters my $replacement = $Macros[$i]->{'macro_code'}; # '\b': Substitute only whole words # not x in xA $in_line =~ s/&$macro_name\b/$replacement/g; } } } last EXPANSIONLOOP if ( $org_in_line eq $in_line ); } return "$in_line$comment"; } }
Subroutine PrintErrorMessage has two parameters: the error message that will be printed on the screen, the log file and the output file, and the line number of the line containing the error was detected. The general form of the error message is the following:
line X: paper{units( ,mm)xrange(0,20)yrange(0,30)axes(B)ticks(10,10)} ***Error: Error_Messagewhere
X
denotes the line number and Error_Message
is the
actual error message. Note, that we print the tokens processed so far
and on the text line the unprocessed tokens, so that the user knows
exactly where the error is. In the variable $A
we store the processed
tokens, while the variable $l
holds the length of $A
plus the
length of the $error_line
(that is the number of the input line where
the error occurred) plus 7, i.e., 4 (the length of the word
line
) plus 2 (the two blank spaces) plus 1 (the symbol :
).
Finally, we increment the error counter (variable $no_errors
). Note, that
in case the user has specified the -c
command line switch, we will not
print any messages to the output file.
<subroutine PrintErrorMessage >= (<-U) sub PrintErrorMessage { my $errormessage = shift; my $error_line = shift; my ($l,$A); $l = 1+length($command)-length; $A = substr($command,0,$l); $l += 7 +length($error_line); for my $fh (STDOUT, LOG) { print $fh "$curr_in_file", "Line $error_line: $A\n"; print $fh " " x $l ,$_,"***Error: $errormessage\n"; } if ($comments_on) { #print to output file file print OUT "%% *** $curr_in_file", "Line $error_line: $A\n"; print OUT "%% *** "," " x $l ,$_,"%% ... Error: $errormessage\n"; } $no_errors++; }
Subroutine PrintWarningMessage behaves exactly like the subroutine PrintErrorMessage. The only difference is that the second subroutine prints only a warning message. A warning is issued when the system detects parameters that do nothing.
<subroutine PrintWarningMessage >= (<-U) sub PrintWarningMessage { my $warningMessage = shift; my $warning_line = shift; my ($l,$A); $l = 1+length($command)-length; $A = substr($command,0,$l); $l += 7 +length($warning_line); for my $fh (STDOUT, LOG) { print $fh "$curr_in_file", "Line $warning_line: $A\n"; print $fh " " x $l ,$_,"***Warning: $warningMessage\n"; } if ($comments_on) { #print to output file file print OUT "%% *** $curr_in_file", "Line $warning_line: $A\n"; print OUT "%% *** "," " x $l ,$_,"%% ... Warning: $warningMessage\n"; } }
The subroutine PrintFatalError behaves similarly to the subroutine PrintErrorMessage. It prints an error message to the screen and aborts execution.
<subroutine PrintFatalError >= (<-U) sub PrintFatalError { my $FatalMessage = shift; my $fatal_line = shift; my ($l,$A); $l = 1+length($command)-length; $A = substr($command,0,$l); $l += 7 +length($fatal_line); die "$curr_in_file", "Line $fatal_line: $A\n" . (" " x $l) . $_ . "***Fatal Error: $FatalMessage\n"; }
The subroutine chk_lparen accepts two arguments: the name
of the token that should be immediately before the left parenthesis (variable
$token
), and the current line number (variable $lc
). First we
skip any leading white space and then check whether the next
input character is a left parenthesis, then the subroutine skips any
trailing white space; otherwise it prints an error message.
<subroutine chk_lparen >= (<-U) sub chk_lparen { my $token = $_[0]; my $lc = $_[1]; s/\s*//; if (/^[^\(]/) { PrintErrorMessage("Missing ( after $token",$lc); } else { s/^\(\s*//; } }
The subroutine chk_rparen accepts two parameters: the name
of the token that should be immediately after a right parenthesis (variable
$token
), and the current line number (variable $lc
). Initially, we
skip any leading white space and then we check whether the next input
token is a right parenthesis. If it is not we issue a error message and
return, otherwise we skip the parenthesis and any trailing white space.
<subroutine chk_rparen >= (<-U) sub chk_rparen { my $token = $_[0]; my $lc = $_[1]; s/\s*//; if (s/^\)//) { s/\s*//; } else { PrintErrorMessage("Missing ) after $token",$lc); } }
The subroutine chk_lcb behaves in a similar way to the subroutine chk_lparen.
<subroutine chk_lcb >= (<-U) sub chk_lcb { my $token = $_[0]; my $lc = $_[1]; s/\s*//; if ($_ !~ /^\{/) { PrintErrorMessage("Missing { after $token",$lc); } else { s/^{\s*//; } }
Subroutine chk_rcb behaves in a similar way to the subroutine chk_rparen.
<subroutine chk_rcb >= (<-U) sub chk_rcb { my $token = $_[0]; my $lc = $_[1]; if ($_ !~ /^\s*\}/) { PrintErrorMessage("Missing } after $token",$lc); } else { s/^\s*}\s*//; } }
Subroutine chk_lsb behaves in a similar way to the subroutine chk_lparen.
<subroutine chk_lsb >= (<-U) sub chk_lsb { my $token = $_[0]; my $lc = $_[1]; s/\s*//; if ($_ !~ /^\[/) { PrintErrorMessage("Missing [ after $token",$lc); } else { s/^\[\s*//; } }
Subroutine chk_rsb behaves in a similar way to the subroutine chk_rparen.
<subroutine chk_rsb >= (<-U) sub chk_rsb { my $token = $_[0]; my $lc = $_[1]; s/\s*//; if ($_ !~ /^\]/) { PrintErrorMessage("Missing ] after $token",$lc); } else { s/^\]\s*//; } }
The subroutine chk_comma
checks whether the next token is a comma.
If it is not then it prints an error message, otherwise it consumes the
comma and any white space that follows the comma.
<subroutine chk_comma >= (<-U) sub chk_comma { my $lc = $_[0]; s/\s*//; if (/^[^,]/) { PrintErrorMessage("Did not find expected comma",$lc); } else { s/^,\s*//; } }
The subroutine chk_comment
has only one parameter which is the current
line number. It checks whether the next input character is a comment
character and in this case it does nothing!. Otherwise, if there is some trailing text
it simply prints a warning to the screen.
<subroutine chk_comment >= (<-U) sub chk_comment { my $lc = $_[0]; s/\s*//; if (/^%/) { # do nothing! } elsif (/^[^%]/) { PrintWarningMessage("Trailing text is ignored",$lc); } }
The subroutine print_headers
prints a header to the output file, as
well as a header to the LOG file.
The header contains information regarding the version of the
program, a copyright notice, the command line, date and time information,
and the names of the various files processed/generated.
<subroutine print_headers >= (<-U) sub print_headers { my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime; $year+=1900; $mon+=1; $now_string = "$year/" . ($mon>9 ? "$mon/" : "0$mon/") . ($mday>9 ? "$mday " : "0$mday ") . ($hour>9 ? "$hour:" : "0$hour:") . ($min>9 ? "$min:" : "0$min:") . ($sec>9 ? "$sec" : "0$sec"); print OUT "%* -----------------------------------------------\n"; print OUT "%* mathspic (Perl version $version_number)\n"; print OUT "%* A filter program for use with PiCTeX\n"; print OUT "%* Copyright (c) 2005-2010 A Syropoulos & RWD Nickalls \n"; print OUT "%* Command line: $0 $commandLineArgs\n"; print OUT "%* Input filename : $source_file\n"; print OUT "%* Output filename: $out_file\n"; print OUT "%* Date & time: $now_string\n"; print OUT "%* -----------------------------------------------\n"; # print LOG "----\n"; print LOG "$now_string\n"; print LOG "mathspic (Perl version $version_number)\n"; print LOG "Copyright (c) 2005-2010 A Syropoulos & RWD Nickalls \n"; print LOG "Input file = $source_file\n"; print LOG "Output file = $out_file\n"; print LOG "Log file = $log_file\n"; print LOG "----\n"; }
The subroutine get_point
parses an individual point name.
If the next token is also a point name then it returns the point name
(but only if the only if
the point name exists in the PointTable). In all other cases it returns
the string _undef_
to indicate that something is wrong.
<subroutine get_point >= (<-U) sub get_point { my ($lc) = $_[0]; my ($PointName); if (s/^([^\W\d_]\d{0,4})\s*//i) { #point name $PointName = $1; if (!exists($PointTable{lc($PointName)})) { PrintErrorMessage("Undefined point $PointName",$lc); return "_undef_"; } else { return lc($PointName); } } else { PrintErrorMessage("Point name expected",$lc); return "_undef_"; } }
The subroutine perpendicular
has 6 parameters that correspond to the
coordinates of some point P and to the coordinates of two points A and
B that define a line. The subroutine returns
a pair of numbers that correspond to the coordinates of a point that lies
at the foot of the perpendicular to the line AB that passes through point P.
The slope of line AB is m1 and so its equation is
y=m1x+c1. Similarly, the slope of the line PF is
m2=-1/m1 and its equation is
y=m2x+c2. Since the line AB passes through A, then
c1=yA-m1xA. Similarly, as P is
on line PF, then c2=yP-m2xP.
Now point F is on both lines, therefore
yF=m2xF+c2 and
yF=m1xF+c1. Solving these
equations for xF and yF gives:
<subroutine perpendicular >= (<-U) sub perpendicular { my ($xP, $yP, $xA, $yA, $xB, $yB) = @_; my ($xF, $yF, $deltax, $deltay, $m1, $m2, $c1, $c2, $factor); $deltax = $xA - $xB; return ($xA, $yP) if abs($deltax) < 0.0000001; $deltay = $yA - $yB; return ($xP, $yA) if abs($deltay) < 0.0000001; $m1 = $deltay / $deltax; eval { $m2 = (-1) / $m1;}; PrintFatalError("Division by zero",$lc) if $@; $c1 = $yA - $m1 * $xA; $c2 = $yP - $m2 * $xP; eval { $factor = 1 / ($m1 - $m2)}; PrintFatalError("Division by zero",$lc) if $@; return (($c2 - $c1) * $factor, ($m1 * $c2 - $m2 * $c1) * $factor); }
The subroutine Length
computes the distance between two points A and B.
Notice, that the name of the subroutine starts with a capital L, just
to avoid conflict with the predefined Perl function. The subroutine
requires four parameters which are the coordinates of the two points.
<subroutine Length >= (<-U) sub Length { my ($xA, $yA, $xB, $yB)=@_; return sqrt(($xB - $xA)**2 + ($yB - $yA)**2); }
The subroutine triangleArea
computes the area of a triangle by using
Heron's formula, i.e., given a triangle ABC, we first compute
s=(AB+BC+CA)/2 and then the area of the triangle is equal to the
square root of s times (s-AB) times (s-BC) times (s-BA), where AB, BC, and CA
are the lengths of the three sides of the triangle. The subroutine accepts 6
parameters, which correspond to the coordinates of three points that define
the triangle.
<subroutine triangleArea >= (<-U) sub triangleArea { my ($xA, $yA, $xB, $yB, $xC, $yC)=@_; my ($lenAB, $lenBC, $lenCA, $s); $lenAB = Length($xA,$yA,$xB,$yB); $lenBC = Length($xB,$yB,$xC,$yC); $lenCA = Length($xC,$yC,$xA,$yA); $s = ($lenAB + $lenBC + $lenCA) / 2; return sqrt($s * ($s - $lenAB)*($s - $lenBC)*($s - $lenCA)); }
The subroutine poinOnLine
accepts five arguments: the coordinates of two
points and the decimal number which corresponds to the distance from the
first point towards the second one. The way we compute the coordinates of
the point is fairly simple.
<subroutine pointOnLine >= (<-U) sub pointOnLine { my ($xA, $yA, $xB, $yB, $dist)=@_; my ($deltax, $deltay, $xPol, $yPol); $deltax = $xB - $xA; $deltay = $yB - $yA; $xPol = $xA + ($dist * $deltax / &Length($xA,$yA,$xB,$yB)); $yPol = $yA + ($dist * $deltay / &Length($xA,$yA,$xB,$yB)); return ($xPol, $yPol); }
As we have mentioned above the subroutine circumCircleCenter
takes six
arguments that correspond to the coordinates of three points that
define a triangle. The subroutine computes the coordinates of
the center of a circle that passes through these three points, and the radius of
the circle. We now describe how the subroutine computes the center
of the circle and its radius. Let the triangle points be t1
, t2
and t3
. We use the two pairs of points to define two sides,
i.e., t1t2
and t2t3
. For each
side we locate the midpoints and get the their coordinates. We check
whether either of these two lines is either vertical or horizontal. If this
is true, we know that one of the coordinates of the center of the circumcircle
is the same as that of the midpoints of the horizontal or vertical line.
Next, we determine the slopes of the lines t1t2
and t2t3
.
We now determine the slope of lines at right-angles to these lines. We solve the
resulting equations and obtain the center of the circumcircle. Now we get the
radius, and then we are done.
<subroutine circumCircleCenter >= (<-U) sub circumCircleCenter { my ($xA, $yA, $xB, $yB, $xC, $yC, $lc)=@_; my ($deltay12, $deltax12, $xs12, $ys12); my ($deltay23, $deltax23, $xs23, $ys23); my ($xcc, $ycc); my ($m23, $mr23, $c23, $m12, $mr12, $c12); my ($sideA, $sideB, $sideC, $a, $radius); if (abs(triangleArea($xA, $yA, $xB, $yB, $xC, $yC)) < 0.0000001) { PrintErrorMessage("Area of triangle is zero!",$lc); return (0,0,0); } $deltay12 = $yB - $yA; $deltax12 = $xB - $xA; $xs12 = $xA + $deltax12 / 2; $ys12 = $yA + $deltay12 / 2; # $deltay23 = $yC - $yB; $deltax23 = $xC - $xB; $xs23 = $xB + $deltax23 / 2; $ys23 = $yB + $deltay23 / 2; # CCXYLINE:{ if (abs($deltay12) < 0.0000001) { $xcc = $xs12; if (abs($deltax23) < 0.0000001) { $ycc = $ys23; last CCXYLINE; } else { $m23 = $deltay23 / $deltax23; $mr23 = -1 / $m23; $c23 = $ys23 - $mr23 * $xs23; $ycc = $mr23 * $xs12 + $c23; last CCXYLINE; } } if (abs($deltax12) < 0.0000001) { $ycc = $ys12; if (abs($deltay23) < 0.0000001) { $xcc = $xs23; last CCXYLINE; } else { $m23 = $deltay23 / $deltax23; $mr23 = -1 / $m23; $c23 = $ys23 - $mr23 * $xs23; $xcc = ($ys12 - $c23) / $mr23; last CCXYLINE; } } if (abs($deltay23) < 0.0000001) { $xcc = $xs23; if (abs($deltax12) < 0.0000001) { $ycc = $ys12; last CCXYLINE; } else { $m12 = $deltay12 / $deltax12; $mr12 = -1 / $m12; $c12 = $ys12 - $mr12 * $xs12; $ycc = $mr12 * $xcc + $c12; last CCXYLINE; } } if (abs($deltax23) < 0.0000001) { $ycc = $ys23; if (abs($deltay12) < 0.0000001) { $xcc = $xs12; last CCXYLINE; } else { $m12 = $deltay12 / $deltax12; $mr12 = -1 / $m12; $c12 = $ys12 - $mr12 * $xs12; $xcc = ($ycc - $c12) / $mr12; last CCXYLINE; } } $m12 = $deltay12 / $deltax12; $mr12 = -1 / $m12; $c12 = $ys12 - $mr12 * $xs12; #----- $m23 = $deltay23 / $deltax23; $mr23 = -1 / $m23; $c23 = $ys23 - $mr23 * $xs23; $xcc = ($c23 - $c12) / ($mr12 - $mr23); $ycc = ($c23 * $mr12 - $c12 * $mr23) / ($mr12 - $mr23); } # $sideA = &Length($xA,$yA,$xB,$yB); $sideB = &Length($xB,$yB,$xC,$yC); $sideC = &Length($xC,$yC,$xA,$yA); $a = triangleArea($xA, $yA, $xB, $yB, $xC, $yC); $radius = ($sideA * $sideB * $sideC) / (4 * $a); # return ($xcc, $ycc, $radius); }
The subroutine ComputeDist
is used to compute a distance that is
specified by either a float number, a pair of points, or a variable
name. In case we have a pair of identifiers, we check whether the first
one is a point. If it isn't a point we assume we have a variable followed
by a keyword. Otherwise, i.e., if it is a point name, we check whether
the second identifier is also a point name. If it is, we simply return
the distance between them, otherwise we issue an error message.
If we have only a single identifier, we check whether it is a
variable that has already been defined, and if so we return its value.
Since, this
subroutine is heavily used, it actually returns a pair of numbers:
the first one being the computed distance and the second one being an
error indicator. If the value of this indicator is 0, then there is no
error. If its value is 1, then there is an error. Moreover, in case there
is an error the distance is assumed to be equal to zero.
<subroutine ComputeDist >= (<-U) sub ComputeDist { my ($lc) = $_[0]; my ($v1, $v2); if (s/^((\+|-)?\d+(\.\d+)?([eE](\+|-)?\d+)?)//) #is it a number? { return ($1, 1); } elsif (/^[^\W\d_]\d{0,4}[^\W\d_]\d{0,4}/) #it is a pair of IDs? { s/^([^\W\d_]\d{0,4})//i; $v1 = $1; if (!exists($PointTable{lc($v1)})) { if (exists($VarTable{lc($v1)})) { return ($VarTable{lc($v1)}, 1); } PrintErrorMessage("Point $v1 has not been defined", $lc); s/^\s*[^\W\d_]\d{0,4}//i; return (0,0); } $v1 = lc($v1); s/^\s*([^\W\d_]\d{0,4})//i; $v2 = $1; if (!exists($PointTable{lc($v2)})) { PrintErrorMessage("Point $v2 has not been defined", $lc); return (0,0); } $v2 = lc($v2); my ($x1,$y1,$pSV1,$pS1) = unpack("d3A*",$PointTable{$v1}); my ($x2,$y2,$pSV2,$pS2) = unpack("d3A*",$PointTable{$v2}); return (Length($x1,$y1,$x2,$y2), 1); } elsif (s/^([^\W\d_]\d{0,4})//i) # it is a single id { $v1 = $1; if (!exists($VarTable{lc($v1)})) #it isn't a variable { PrintErrorMessage("Variable $v1 has not been defined", $lc); return (0,0); } return ($VarTable{lc($v1)}, 1); } else { PrintErrorMessage("Unexpected token", $lc); return (0,0); } }
The subroutine intersection4points
has 8 parameters that correspond to the
coordinates of four points that uniquely determine two lines, and computes the
the point of intersection of these two lines.
<subroutine intersection4points >= (<-U) sub intersection4points { my ($x1, $y1, $x2, $y2, $x3, $y3, $x4, $y4) = @_; my ($deltay12, $deltax12, $deltay34, $deltax34); my ($xcc, $ycc, $m34, $c34, $m12, $c12); $deltay12 = $y2 - $y1; $deltax12 = $x2 - $x1; # $deltay34 = $y4 - $y3; $deltax34 = $x4 - $x3; I4PXYLINE:{ if (abs($deltay12) < 0.0000001) { $ycc = $y1; if (abs($deltax34) < 0.0000001) { $xcc = $x3; last I4PXYLINE; } else { $m34 = $deltay34 / $deltax34; $c34 = $y3 - $m34 * $x3; $xcc = ($ycc - $c34) / $m34; last I4PXYLINE; } } if (abs($deltax12) < 0.0000001) { $xcc = $x1; if (abs($deltay34) < 0.0000001) { $ycc = $y3; last I4PXYLINE; } else { $m34 = $deltay34 / $deltax34; $c34 = $y3 - $m34 * $x3; $ycc = $m34 * $xcc + $c34; last I4PXYLINE; } } if (abs($deltay34) < 0.0000001) { $ycc = $y3; if (abs($deltax12) < 0.0000001) { $xcc = $x1; last I4PXYLINE; } else { $m12 = $deltay12 / $deltax12; $c12 = $y1 - $m12 * $x1; $xcc = ($ycc - $c12) / $m12; last I4PXYLINE; } } if (abs($deltax34) < 0.0000001) { $xcc = $x3; if (abs($deltay12) < 0.0000001) { $ycc = $y1; last I4PXYLINE; } else { $m12 = $deltay12 / $deltax12; $c12 = $y1 - $m12 * $x1; $ycc = $m12 * $xcc + $c12; last I4PXYLINE; } } $m12 = $deltay12 / $deltax12; $c12 = $y1 - $m12 * $x1; $m34 = $deltay34 / $deltax34; $c34 = $y3 - $m34 * $x3; $xcc = ($c34 - $c12) / ($m12 - $m34); $ycc = ($c34 * $m12 - $c12 * $m34) / ($m12 - $m34); } return ($xcc, $ycc); }
The subroutine IncircleCenter
computes the center and the
radius of the circle that is inside a triangle and touches the sides of
the triangle. The subroutine has six arguments that correspond to the
coordinates of three points that uniquely determine the triangle. Here are
the details:
intersection4points
subroutine to return the
coordinates of the intersection Xi, Yi.<subroutine IncircleCenter >= (<-U) sub IncircleCenter { my ($Ax, $Ay, $Bx, $By, $Cx, $Cy) = @_; my ($sideA, $sideB, $sideC); my ($ba1, $xA1, $yA1, $cb1, $ac1, $xB1, $yB1, $xC1, $yC1, $a, $s, $r); #determine the lengths of the sides $sideA = Length($Bx, $By, $Cx, $Cy); $sideB = Length($Cx, $Cy, $Ax, $Ay); $sideC = Length($Ax, $Ay, $Bx, $By); # $ba1 = ($sideC * $sideA) / ($sideB + $sideC); ($xA1, $yA1) = pointOnLine($Bx, $By, $Cx, $Cy, $ba1); $cb1 = ($sideA * $sideB) / ($sideC + $sideA); ($xB1, $yB1) = pointOnLine($Cx, $Cy, $Ax, $Ay, $cb1); $ac1 = ($sideB * $sideC) / ($sideA + $sideB); ($xC1, $yC1) = pointOnLine($Ax, $Ay, $Bx, $By, $ac1); ($xcenter, $ycenter) = &intersection4points($Ax, $Ay, $xA1, $yA1, $Bx, $By, $xB1, $yB1); # get radius $a = &triangleArea($Ax, $Ay, $Bx, $By, $Cx, $Cy); $s = ($sideA + $sideB +$sideC) / 2; $r = $a / $s; return ($xcenter, $ycenter, $r); }
The subroutine Angle
takes six arguments which correspond to the
coordinates of three points that define an angle. The subroutine computes
the opening of the angle in degrees. In case there is an error it returns
the number -500. ****EXPLAIN THE ALGORITHM****
<subroutine Angle >= (<-U) sub Angle { my ($Ax, $Ay, $Bx, $By, $Cx, $Cy) = @_; my ($RAx, $RAy, $RBx, $RBy, $RCx, $RCy, $deltax, $deltay); my ($lineBA, $lineBC, $lineAC, $k, $kk, $angle); my ($T, $cosT, $sinT) = (0.3, cos(0.3), sin(0.3)); $RAx = $Ax * $cosT + $Ay * $sinT; $RAy = -$Ax * $sinT + $Ay * $cosT; $RBx = $Bx * $cosT + $By * $sinT; $RBy = -$Bx * $sinT + $By * $cosT; $RCx = $Cx * $cosT + $Cy * $sinT; $RCy = -$Cx * $sinT + $Cy * $cosT; $deltax = $RBx - $RAx; $deltay = $RBy - $RAy; $lineBA = sqrt($deltax*$deltax + $deltay*$deltay); if ($lineBA < 0.0000001) { return -500; } $deltax = $RBx - $RCx; $deltay = $RBy - $RCy; $lineBC = sqrt($deltax*$deltax + $deltay*$deltay); if ($lineBC < 0.0000001) { return -500; } $deltax = $RAx - $RCx; $deltay = $RAy - $RCy; $lineAC = sqrt($deltax*$deltax + $deltay*$deltay); if ($lineAC < 0.0000001) { return -500; } $k = ($lineBA*$lineBA + $lineBC*$lineBC - $lineAC*$lineAC ) / (2 * $lineBA * $lineBC); $k = -1 if $k < -0.99999; $k = 1 if $k > 0.99999; $kk = $k * $k; if (($kk * $kk) == 1) { $angle = PI if $k == -1; $angle = 0 if $k == 1; } else { $angle = (PI / 2) - atan2($k / sqrt(1 - $kk),1); } return $angle * 180 / PI; }
The subroutine excircle
computes the center and the radius of a circle that
externally touches a given side (4th and 5th arguments) of triangle (determined
by the 1rst, the 2nd and 3rd argument). Here are the details:
<subroutine excircle >= (<-U) sub excircle { my ($A, $B, $C, $D, $E) = @_; my ($Ax,$Ay,$Bx,$By,$Dx,$Dy,$Ex,$Ey,$ASVA,$ASA); ($Ax,$Ay,$ASVA,$ASA)=unpack("d3A*",$PointTable{$A}); ($Bx,$By,$ASVA,$ASA)=unpack("d3A*",$PointTable{$B}); ($Cx,$Cy,$ASVA,$ASA)=unpack("d3A*",$PointTable{$C}); ($Dx,$Dy,$ASVA,$ASA)=unpack("d3A*",$PointTable{$D}); ($Ex,$Ey,$ASVA,$ASA)=unpack("d3A*",$PointTable{$E}); my ($sideA, $sideB, $sideC, $s, $R, $theAdeg, $d); my ($Xmypoint, $Ymypoint, $deltax, $deltay, $mylength, $xc, $yc); $sideA = &Length($Bx, $By, $Cx, $Cy); $sideB = &Length($Cx, $Cy, $Ax, $Ay); $sideC = &Length($Ax, $Ay, $Bx, $By); $s = ($sideA + $sideB + $sideC) / 2; $R = triangleArea($Ax, $Ay, $Bx, $By, $Cx, $Cy) / ($s - &Length($Dx, $Dy, $Ex, $Ey)); if (($D eq $A && $E eq $B) || ($D eq $B && $E eq $A)) { $theAdeg = &Angle($Bx, $By, $Cx, $Cy, $Ax, $Ay); $Xmypoint = $Cx; $Ymypoint = $Cy; } elsif (($D eq $B && $E eq $C) || ($D eq $C && $E eq $B)) { $theAdeg = &Angle($Cx, $Cy, $Ax, $Ay, $Bx, $By); $Xmypoint = $Ax; $Ymypoint = $Ay; } elsif (($D eq $C && $E eq $A) || ($D eq $A && $E eq $C)) { $theAdeg = &Angle($Ax, $Ay, $Bx, $By, $Cx, $Cy); $Xmypoint = $Bx; $Ymypoint = $By; } else { return (0,0,0); } $d = $R / sin($theAdeg * PI / 180 / 2); my ($xIn, $yIn, $rin) = &IncircleCenter($Ax, $Ay, $Bx, $By, $Cx, $Cy); $deltax = $xIn - $Xmypoint; $deltay = $yIn - $Ymypoint; $mylength = sqrt($deltax*$deltax + $deltay*$deltay); $xc = $Xmypoint + $d * $deltax / $mylength; $yc = $Ymypoint + $d * $deltay / $mylength; return ($xc, $yc, $R); }
The DrawLineOrArrow
subroutine is used to parse the arguments of the commands
drawline
, drawthickline
, drawarrow
, drawthickarrow
and
drawCurve
. In general, these commands have as arguments a list of points separated by
commas that are used to draw a set of lines. The list of points is
enclosed in parentheses. Here we give only the syntax of the drawline
comma, as the syntax of the other commands is identical:
drawline ::= "drawline" "(" Points { "," Points } ")" Points ::= Point { separator Point} separator ::= blank | emptyIn the following code we scan a list of points (possibly separated by blanks) and we stop when we encounter either a comma or some other character. In case we have found a comma, we check whether we have a
drawline
command and if this is
the case we plot the list of points. We continue with the next list of points,
until there are no more points. The inner while-loop is used to control the
consumption of point tokens and the external to reset the array PP
which
holds the point names.
<subroutine DrawLineOrArrow >= (<-U) sub DrawLineOrArrow { my $draw_Line = shift; my $lc = shift; my $lineLength = -1; my $stacklen = 0; my @PP = (); # if ($draw_Line != 2) { # s/\s*//; # if (s/^\[\s*//) { # optional length specifier # $lineLength = expr($lc); # if ($lineLength <= 0) { # PrintErrorMessage("length must greater than zero",$lc); # $lineLength = -1; # } # chk_rsb("optional part",$lc); # } # } chk_lparen("$cmd",$lc); DRAWLINES:while(1) { @PP = () ; while(1) { if (s/^([^\W\d_]\d{0,4})\s*//i) { #point name $P = $1; if (!exists($PointTable{lc($P)})) { PrintErrorMessage("Undefined point $P",$lc); } else { push (@PP,$P); } } else { $stacklen = @PP; if ($draw_Line != 2) { if ($stacklen <= 1) { PrintErrorMessage("Wrong number of points",$lc); } else { push(@PP,$lc); if ($draw_Line == 0) { drawarrows(@PP); } elsif ($draw_Line == 1) { drawlines(@PP); } } } if (s/^,\s*// and $draw_Line != 2) { next DRAWLINES; } else { last DRAWLINES; } } } } if ($draw_Line == 2) { $stacklen = @PP; if ($stacklen < 2) { PrintErrorMessage("Wrong number of points",$lc); } elsif ($stacklen % 2 == 0) { PrintErrorMessage("Number of points must be odd",$lc); } else { drawCurve(@PP); } } chk_rparen("arguments of $cmd",$lc); chk_comment($lc); }
The subroutine drawarrows
is used to draw one or more lines. The subroutine
accepts as argument an array which contains the names of the points which
define the lines, plus the current program line number. Each arrow is printed
using the following code:
$arrowAngleB
* d2r
/2) and gamma is equal to
2*tan($arrowAngleC
* d2r
/ 2).
<subroutine drawarrows >= (<-U) sub drawarrows { my ($NoArgs); $NoArgs = @_; my ($lc) = $_[$NoArgs-1]; #line number is the last argument my ($NumberOfPoints, $p, $q, $r12, $d12); my ($px,$py,$pSV,$pS, $qx,$qy,$qSV,$qS); $NumberOfPoints = $NoArgs - 1; LOOP: for(my $i=0; $i < $NumberOfPoints - 1; $i++) { $p = $_[$i]; $q = $_[$i+1]; ($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)}); ($qx,$qy,$qSV,$qS) = unpack("d3A*",$PointTable{lc($q)}); $pSV = $defaultLFradius if $pSV == 0; $qSV = $defaultLFradius if $qSV == 0; $r12 = $pSV + $qSV; $d12 = Length($px,$py,$qx,$qy); if ($d12 <= $r12) { if($d12 == 0) { PrintErrorMessage("points $p and $q are the same", $lc); next LOOP; } PrintWarningMessage("arrow $p$q not drawn: points too close or ". "radii too big", $lc); next LOOP; } ($px, $py) = pointOnLine($px, $py, $qx, $qy, $pSV) if $pSV > 0; ($qx, $qy) = pointOnLine($qx, $qy, $px, $py, $qSV) if $qSV > 0; my ($beta, $gamma); $beta = tan($arrowAngleB * D2R / 2); $gamma = 2 * tan($arrowAngleC * D2R / 2); printf OUT "\\arrow <%.5f%s> [%.5f,%.5f] from %.5f %.5f to %.5f %.5f\n", $arrowLength, $arrowLengthUnits, $beta, $gamma, $px, $py, $qx, $qy; } }
The subroutine drawlines
is used to draw one or more lines. The subroutine
accepts as argument an array which contains the names of the points which
define the lines, plus the current program line number. If there are only
two points (i.e., only one line), then we output the following PiCTeX code:
pointOnLine
subroutine to determine the point on the line which is just on the line-free
boundary, and draw the line to the that point instead of to the exact
point-location.
<subroutine drawlines >= (<-U) sub drawlines { my ($NoArgs); $NoArgs = @_; my ($lc) = $_[$NoArgs-1]; #line number is the last argument my ($NumberOfPoints, $p, $q, $r12, $d12); my ($px,$py,$pSV,$pS, $qx,$qy,$qSV,$qS); $NumberOfPoints = $NoArgs - 1; LOOP: for(my $i=0; $i < $NumberOfPoints - 1; $i++) { $p = $_[$i]; $q = $_[$i+1]; ($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)}); ($qx,$qy,$qSV,$qS) = unpack("d3A*",$PointTable{lc($q)}); $pSV = $defaultLFradius if $pSV == 0; $qSV = $defaultLFradius if $qSV == 0; $r12 = $pSV + $qSV; $d12 = Length($px,$py,$qx,$qy); if ($d12 <= $r12) { if($d12 == 0) { PrintErrorMessage("points $p and $q are the same", $lc); next LOOP; } PrintWarningMessage("line $p$q not drawn: points too close or ". "radii too big", $lc); next LOOP; } ($px, $py) = pointOnLine($px, $py, $qx, $qy, $pSV) if $pSV > 0; ($qx, $qy) = pointOnLine($qx, $qy, $px, $py, $qSV) if $qSV > 0; if ($px == $qx || $py == $qy) { printf OUT "\\putrule from %.5f %.5f to %.5f %.5f %%%% %s%s\n", $px,$py,$qx,$qy,$p,$q; } else { printf OUT "\\plot %.5f %.5f\t%.5f %.5f / %%%% %s%s\n", $px, $py,$qx,$qy,$p,$q; } } }
The subroutine drawCurve
is used to draw a curve that passes through an odd
number of points. The subroutine has as argument an array which contains the names of the
points which define the lines plus the current program line number. The subroutine
emits code that has the following general form:
\setquadratic \plot X1 Y1 X2 Y2 X3 Y3 \setlinear
<subroutine drawCurve >= (<-U) sub drawCurve { my ($NoArgs); $NoArgs = @_; my ($lc) = $_[$NoArgs-1]; #line number is the last argument my ($NumberOfPoints, $p); $NumberOfPoints = $NoArgs - 1; print OUT "\\setquadratic\n\\plot\n"; for(my $i=0; $i <= $NumberOfPoints; $i++) { $p = $_[$i]; my ($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)}); printf OUT "\t%0.5f %0.5f", $px, $py; print OUT (($i == $NumberOfPoints) ? " / %$p\n" : " %$p\n"); } print OUT "\\setlinear\n"; }
The subroutine drawpoints
is used to draw one or more points. The subroutine
has as arguments a list of points. For each point we produce code that has
the following general form:
SYMBOL
is either the default plot symbol, i.e., $\bullet$
,
whatever the user has set with the PointSymbol
command, or the plot
symbol specified in the definition of the point.
<subroutine drawpoints >= (<-U) sub drawpoints { my ($NumberOfPoints,$p); $NumberOfPoints = @_; my ($px,$py,$pSV,$pS); for($i=0; $i < $NumberOfPoints; $i++) { $p = $_[$i]; ($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)}); if ($pS eq "" and $defaultsymbol =~ /circle|square/) { $pS = $defaultsymbol; } POINTSWITCH: { if ($pS eq "") # no plot symbol specified { printf OUT "\\put {%s} at %.5f %.5f %%%% %s\n", $defaultsymbol, $px, $py, $p; last POINTSWITCH; } if ($pS eq "circle") # plot symbol is a circle { my $radius = (defined($DimOfPoint{lc($p)})) ? $DimOfPoint{lc($p)} : $GlobalDimOfPoints; if ($radius > 0) # draw a circle using the current units { if ($radius == 1.5) # use \bigcirc { printf OUT "\\put {\$\\bigcirc\$} at %.5f %.5f %%%% %s\n", $px, $py, $p; } else { printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f %%%% %s\n", $px+$radius, $py, $px, $py, $p; } } else #use \circ symbol { printf OUT "\\put {\$\\circ\$} at %.5f %.5f %%%% %s\n", $px,$py,$p; } last POINTSWITCH; } if ($pS eq "square") { my $side = (defined($DimOfPoint{lc($p)})) ? $DimOfPoint{lc($p)} : $GlobalDimOfPoints; printf OUT "\\put {%s} at %.5f %.5f %%%% %s\n", drawsquare($side), $px, $py, $p; last POINTSWITCH; } printf OUT "\\put {%s} at %.5f %.5f %%%% %s\n", $pS,$px,$py,$p; } } }
The subroutine drawAngleArc
gets six arguments which correspond to
three points defining an angle (variables $P1
, $P2
and $P3
),
the radius, the internal/external specification and the direction
specification (clockwise or anticlockwise).
Depending on the values of these arguments, the subroutine
returns the corresponding PiCTeX code, the general format of
which is
\circulararc Angle degrees from x y center at x2 y2where
Angle
is the angle that the three points P1 P2 P3 define
(computed by subroutine Angle
),
and x
and y
are the coordinates of a point
residing on line P2P1 at distance equal to a $radius
from
point $P2
; and x2
, y2
are the coordinates of the
center of the circle about which the arc is drawn,
i.e., point $P2
.
<subroutine drawAngleArc >= (<-U) sub drawAngleArc { my ($P1, $P2, $P3, $radius, $inout, $direction) = @_; my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P1}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$P3}); my $internalAngle = Angle($x1, $y1, $x2, $y2, $x3, $y3); my $externalAngle = 360 - $internalAngle; my ($x, $y) = pointOnLine($x2, $y2, $x1, $y1, $radius); my $code = ""; if ($inout eq "internal" and $direction eq "clockwise" ) { $code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n", -1 * $internalAngle, $x, $y, $x2, $y2; } elsif ($inout eq "internal" and $direction eq "anticlockwise" ) { $code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n", $internalAngle, $x, $y, $x2, $y2; } elsif ($inout eq "external" and $direction eq "clockwise" ) { $code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n", -1 * $externalAngle, $x, $y, $x2, $y2; } elsif ($inout eq "external" and $direction eq "anticlockwise" ) { $code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n", $externalAngle, $x, $y, $x2, $y2; } return $code; }
The subroutine drawAngleArrow
gets six arguments which correspond to
three points defining an angle (variables $P1
, $P2
and $P3
),
the radius, the internal/external specification and the direction
specification. The subroutine mainly draws the arrowhead, and
calls the subroutine drawAngleArc
to draw the
arc part of the arrow.
<subroutine drawAngleArrow >= (<-U) sub drawAngleArrow { my ($P1, $P2, $P3, $radius, $inout, $direction) = @_; my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P1}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$P3}); my $code = drawAngleArc($P1, $P2, $P3, $radius, $inout, $direction); my ($xqp, $yqp) = pointOnLine($x2, $y2, $x1, $y1, $radius); my ($deltax, $deltay) = ($x1 - $x2, $y1 - $y2); my $AL; if ($xunits =~ /mm/) { $AL = 1; } elsif ($xunits =~ /cm/) { $AL = 0.1; } elsif ($xunits =~ /pt/) { $AL = 2.845; } elsif ($xunits =~ /bp/) { $AL = 2.835; } elsif ($xunits =~ /pc/) { $AL = 0.2371; } elsif ($xunits =~ /in/) { $AL = 0.03937; } elsif ($xunits =~ /dd/) { $AL = 2.659; } elsif ($xunits =~ /cc/) { $AL = 0.2216; } elsif ($xunits =~ /sp/) { $AL = 186467.98; } my $halfAL = $AL / 2; my $d = sqrt($radius * $radius - $halfAL * $halfAL); my $alpha = atan2($d / $halfAL, 1) * R2D; my $beta = 2 * (90 - $alpha); my $thetaqr; if (abs($deltay) < 0.00001) { if ($deltax > 0 ) {$thetaqr = 0 } elsif ($deltax < 0) {$thetaqr = -180} } else { if (abs($deltax) < 0.00001) { $thetaqr = 90; } else { $thetaqr = atan2($deltay / $deltax, 1) * R2D; } } my ($xqr, $yqr) = pointOnLine($x2, $y2, $x3, $y3, $radius); $deltax = $x3 - $x2; $deltay = $y3 - $y2; $alpha = atan2(sqrt($radius * $radius - $halfAL * $halfAL) / $halfAL, 1) / D2R; $beta = 2 * (90 - $alpha); LINE2 : { if (abs($deltax) < 0.00001) { if ($deltay > 0) { $thetaqr = 90 } elsif ($deltay < 0) { $thetaqr = - 90 } last LINE2; } else { $thetaqr = atan2($deltay / $deltax, 1) * R2D; } if (abs($deltay) < 0.00001) { if ($deltax > 0) { $thetaqr = 0 } elsif ($deltax < 0) { $thetaqr = -180 } last LINE2; } else { $thetaqr = atan2($deltay / $deltax, 1) * R2D; } if ($deltax < 0 and $deltay > 0) { $thetaqr += 180 } elsif ($deltax < 0 and $deltay < 0) { $thetaqr += 180 } elsif ($deltax > 0 and $deltay < 0) { $thetaqr += 360 } } my $xqrleft = $x2 + $radius * cos(($thetaqr + $beta) * D2R); my $yqrleft = $y2 + $radius * sin(($thetaqr + $beta) * D2R); my $xqrright = $x2 + $radius * cos(($thetaqr - $beta) * D2R); my $yqrright = $y2 + $radius * sin(($thetaqr - $beta) * D2R); if ($inout eq "internal" and $direction eq "clockwise") { $code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n", $xqrleft, $yqrleft, $xqr, $yqr; } elsif ($inout eq "internal" and $direction eq "anticlockwise") { $code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n", $xqrright, $yqrright, $xqr, $yqr; } elsif ($inout eq "external" and $direction eq "clockwise") { $code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n", $xqrleft, $yqrleft, $xqr, $yqr; } elsif ($inout eq "external" and $direction eq "anticlockwise") { $code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n", $xqrright, $yqrright, $xqr, $yqr; } return $code; }
The subroutine expr
is used to parse an expression. We are using a
recursive descent parser to parse and evaluate an expression. The
general syntax of an expression is as follows:
expr ::= term { addop term } addop ::= "+" | "-" term ::= factor { mulop factor } mulop ::= "*" | "/" | "rem" factor ::= primitive [ ** factor ] primitive ::= [ "+" | "-"] primitive | number | variable | pair-of-points | "(" expr ")" | "sin (" expr ")" | "cos (" expr ")" | "area (" ThreePoints ")" | "tan (" expr ")" | "exp (" expr ")" | "int" "(" expr ")" | "log (" expr ")" | "atan (" expr ")" | "sgn" "(" expr ")" | "sqrt (" expr ")" | "acos (" expr ")" | "asin (" expr ")" | "atan (" expr ")" | "_pi_" | "_e_" | "xcoord (" point ")" | "ycoord (" point ")" | "angle "(" ThreePoints ")"| "angledeg" "(" ThreePoints ")" | "direction" "(" TwoPoints ")" | "directiondeg" "(" TwoPoints ")" | "_linethickness_"Note that
_pi_
and _e_
can be used to access the value of the constants
Pi and e.
<subroutine expr >= (<-U) sub expr { my $lc = $_[0]; my($left,$op,$right); $left = term($lc); while ($op = addop()) { $right = term($lc); if ($op eq '+') { $left += $right } else { $left -= $right } } return $left; } sub addop { s/^([+-])// && $1; } sub term { my $lc = $_[0]; my ($left, $op, $right); $left = factor($lc); while ($op = mulop()) { $right = factor($lc); if ($op eq '*') { $left *= $right } elsif ($op =~ /rem/i) { eval {$left %= $right}; PrintFatalError("Division by zero", $lc) if $@; } else { eval {$left /= $right}; PrintFatalError("Division by zero", $lc) if $@; } } return $left; } sub mulop { (s#^([*/])## || s/^(rem)//i) && lc($1); } sub factor { my $lc = $_[0]; my ($left); $left = primitive($lc); if (s/^\*\*//) { $left **= factor($lc); } return $left; } sub primitive { my $lc = $_[0]; my $val; s/\s*//; if (s/^\(//) { #is it an expr in parentheses $val = expr($lc); s/^\)// || PrintErrorMessage("Missing right parenthesis", $lc); } elsif (s/^-//) { # is it a negated primitive $val = - primitive(); } elsif (s/^\+//) { # is it a positive primitive $val = primitive(); } elsif (s/^angledeg//i) { chk_lparen("angledeg",$lc); my $point_1 = get_point($lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); my $point_2 = get_point($lc); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); my $point_3 = get_point($lc); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3}); my $d12 = Length($x1, $y1, $x2, $y2); my $d23 = Length($x2, $y2, $x3, $y3); my $d31 = Length($x3, $y3, $x1, $y1); if ( $d12 == 0 ) { PrintErrorMessage("points `$point_1' and `$point_2' are the same", $lc); $val = 0; } elsif ( $d23 == 0 ) { PrintErrorMessage("points `$point_2' and `$point_3' are the same", $lc); $val = 0; } elsif ( $d31 == 0 ) { PrintErrorMessage("points `$point_1' and `$point_3' are the same", $lc); $val = 0; } else { $val = Angle($x1, $y1, $x2, $y2, $x3, $y3); $val = 0 if $val == -500; } chk_rparen("Missing right parenthesis", $lc); } elsif (s/^angle//i) { chk_lparen("angle",$lc); my $point_1 = get_point($lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); my $point_2 = get_point($lc); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); my $point_3 = get_point($lc); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3}); my $d12 = Length($x1, $y1, $x2, $y2); my $d23 = Length($x2, $y2, $x3, $y3); my $d31 = Length($x3, $y3, $x1, $y1); if ( $d12 == 0 ) { PrintErrorMessage("points `$point_1' and `$point_2' are the same", $lc); $val = 0; } elsif ( $d23 == 0 ) { PrintErrorMessage("points `$point_2' and `$point_3' are the same", $lc); $val = 0; } elsif ( $d31 == 0 ) { PrintErrorMessage("points `$point_1' and `$point_3' are the same", $lc); $val = 0; } else { $val = Angle($x1, $y1, $x2, $y2, $x3, $y3); if ($val == -500) { $val = 0; } else { $val = D2R * $val; } } chk_rparen("Missing right parenthesis", $lc); } elsif (s/^area//i) { chk_lparen("angledeg",$lc); my $point_1 = get_point($lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); my $point_2 = get_point($lc); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); my $point_3 = get_point($lc); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3}); $val = triangleArea($x1, $y1, $x2, $y2, $x3, $y3); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^asin//i) { chk_lparen("asin"); $val = expr(); PrintFatalError("Can't take asin of $val", $lc) if $val < -1 || $val > 1; $val = asin($val); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^acos//i) { chk_lparen("acos"); $val = expr(); PrintFatalError("Can't take acos of $val", $lc) if $val < -1 || $val > 1 ; $val = acos($val); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^atan//i) { chk_lparen("atan"); $val = expr(); $val = atan($val); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^cos//i) { chk_lparen("cos"); $val = expr(); $val = cos($val); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^directiondeg//i) { chk_lparen("directiondeg",$lc); my $point_1 = get_point($lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); my $point_2 = get_point($lc); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); my $x3 = $x1+1; if ( ($y2 - $y1) >= 0) { $val = Angle($x3, $y1, $x1, $y1, $x2, $y2); $val = 0 if $val == -500; } else { $val = 360 - Angle($x3, $y1, $x1, $y1, $x2, $y2); $val = 0 if $val == -500; } chk_rparen("Missing right parenthesis", $lc); } elsif (s/^direction//i) { chk_lparen("direction",$lc); my $point_1 = get_point($lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); my $point_2 = get_point($lc); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); my $x3 = $x1+1; if ( ($y2 - $y1) >= 0) { $val = Angle($x3, $y1, $x1, $y1, $x2, $y2); $val = 0 if $val == -500; $val = D2R * $val; } else { $val = 360 - Angle($x3, $y1, $x1, $y1, $x2, $y2); $val = 0 if $val == -500; $val = D2R * $val; } chk_rparen("Missing right parenthesis", $lc); } elsif (s/^exp//i) { chk_lparen("exp"); $val = expr(); $val = exp($val); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^int//i) { chk_lparen("int"); $val = expr(); $val = int($val); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^log//i) { chk_lparen("log"); $val = expr(); PrintFatalError("Can't take log of $val", $lc) if $val <= 0; $val = log($val); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^sin//i) { chk_lparen("sin"); $val = expr(); $val = sin($val); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^sgn//i) { chk_lparen("sgn"); $val = expr(); if ($val > 0) { $val = 1; } elsif ($val == 0) { $val = 0; } else { $val = -1; } chk_rparen("Missing right parenthesis", $lc); } elsif (s/^sqrt//i) { chk_lparen("sqrt"); $val = expr(); $val = sqrt($val); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^tan//i) { chk_lparen("tan"); $val = expr(); $val = sin($val)/cos($val); chk_rparen("Missing right parenthesis", $lc); } elsif (s/^xcoord//i) { chk_lparen("xcoord"); my $point_name = get_point; my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_name}); $val = $x1; chk_rparen("Missing right parenthesis", $lc); } elsif (s/^ycoord//i) { chk_lparen("ycoord"); my $point_name = get_point; my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_name}); $val = $y1; chk_rparen("Missing right parenthesis", $lc); } elsif (s/^_pi_//i) { $val = PI; } elsif (s/^_e_//i) { $val = 2.71828182845905; } elsif (s/^_linethickness_//i) { $val = $LineThickness / $xunits; } else { my $err_code; ($val,$err_code) = ComputeDist($lc); } s/\s*//; return $val; }
The subroutine memberOf
is used to check whether a string is part of
a list of strings. We assume that the first argument is the string in
question. We compare each list element against the string in question and
if we find it we stop and return the value 1
(denoting truth). Otherwise,
we simply return the value 0
(denoting false).
<subroutine memberOf >= (<-U) sub memberOf { my $elem = shift(@_); my $found = 0; foreach $item (@_){ if ($item eq $elem){ $found = 1; last; } } return $found; }
The subroutine midpoint
computes the coordinates of the midpoint of two points
by means of the simple formula:
<subroutine midpoint >= (<-U) sub midpoint { my ($x1, $y1, $x2, $y2)=@_; return ($x1 + ($x2 - $x1)/2, $y1 + ($y2 - $y1)/2); }
The subroutine tand
computes the tangent of an angle. The angle is
supposed to be in degrees. We simply transform it into radians and then
compute the actual result.
<subroutine tand >= (<-U) sub tand { my $d = $_[0]; $d = $d * PI / 180; return sin($d)/cos($d); }
The subroutine get_string
is used to extract a leading valid mathspic string
from the input line. A string must start with a quotation mark, i.e., "
,
and must end with the same symbol. A string may contain quotation marks which
must be escaped with a backslash, i.e., \
. Initially, we remove all
leading white space. If the next character of the string is not a quotation
mark we print an error message and stop. Otherwise, we split the string into
an array of characters and store the characters up to the next quotation
mark to the array @cmd
. In case the next character is a backslash and
we aren't at the end of the input string and the next character is a
quotation mark, we have an escape sequence. This means that we store these
two characters in the @cmd
array and skip to characters after the quotation
mark. Otherwise, we simply store the character in the @cmd
array and
skip to the next character. This process is repeated until either we consume
all the characters of the string or until we find a sole quotation mark.
Since we are not sure what has forced the loop to exit, we check whether
there are still characters in the input string and we check whether this
is a quotation mark. If these tests fail we have a string without a
closing quotation mark. In all cases we return a triplet consisting of
a number denoting success (1) or failure (0) and what we have consumed
from the input string, and what is left from the input string.
<subroutine get_string >= (<-U) sub get_string { my $string = shift; my $lc = shift; $string =~ s/^\s+//; if ($string !~ s/^\"//) { PrintErrorMessage("No starting \" found",$lc); return (1,$string,$string); } my @ch = split //,$string; my @cmd; while (@ch and $ch[0] ne "\"") { if ($ch[0] eq "\\" and (defined $ch[1]) and $ch[1] eq "\"") { shift @ch; push @cmd, $ch[0]; shift @ch; } else { push @cmd, $ch[0]; shift @ch; } } if (! defined $ch[0]) { PrintErrorMessage("No closing \" found",$lc); return (1,join("",@cmd), join("",@ch)) } else { shift @ch; return (0, join("",@cmd), join("",@ch)) } }
The definition as well as an explanation of the functionality of the following subroutine can be found in "Programming Perl", 3rd edition.
<subroutine is_tainted >= (<-U) sub is_tainted { my $arg = shift; my $nada = substr($arg,0,0); local $@; eval { eval "# $nada"}; return length($@) != 0; }
The subroutine noOfDigits
has one argument which is a number and returns
the number of decimal digits it has. If the number matches the regular
expression ^\d+(?!\.)
(a series of digits not followed by a
period), then the number of decimal digits is zero. If the
number matches the
regular expression ^\d+\.(\d+)?
, then number of decimal digits equals
length($1)
. Naturally, it maybe zero!
<subroutine noOfDigits >= (<-U) sub noOfDigits { my $num = $_[0]; if ($num =~ /^[\+-]?\d+(?!\.)/) { return 0; } elsif ($num =~ /^[\+-]\d+\.(\d+)?/) { return length($1); } }
Subroutine drawsquare
is use by the drawpoints
routine to plot a
point whose point symbol is a square. The subroutine has one argument, which is
equal to the radius of the point. From this argument it computes the side of
the square.
<subroutine drawsquare >= (<-U) sub drawsquare { my $s = $_[0]; #$s *= sqrt(2); $s = sprintf "%.5f", $s; my $code = "\\setlength{\\unitlength}{$xunits}%\n"; $code .= "\\begin{picture}($s,$s)\\put(0,0)" . "{\\framebox($s,$s){}}\\end{picture}"; return $code; }
Subroutine X2sp
has two arguments: a number and a length unit. It returns
the length expresssed in sp units.
<subroutine X2sp >= (<-U) sub X2sp { my $LT = shift; my $units = shift; if ($units eq "pc") { return $LT * 786432; } elsif ($units eq "pt") { return $LT * 65536; } elsif ($units eq "in") { return $LT * 4736286.72; } elsif ($units eq "bp") { return $LT * 65781.76; } elsif ($units eq "cm") { return $LT * 1864679.811023622; } elsif ($units eq "mm") { return $LT * 186467.981102362; } elsif ($units eq "dd") { return $LT * 70124.086430424; } elsif ($units eq "cc") { return $LT * 841489.037165082; } elsif ($units eq "sp") { return $LT; } }
Subroutine sp2X
has two arguments: a number that denotes a length in sp units
and a length unit. It returns the length expresssed in units that are specified by
the second argument.
<subroutine sp2X >= (<-U) sub sp2X { my $LT = shift; my $units = shift; if ($units eq "pc") { return $LT / 786432; } elsif ($units eq "pt") { return $LT / 65536; } elsif ($units eq "in") { return $LT / 4736286.72; } elsif ($units eq "bp") { return $LT / 65781.76; } elsif ($units eq "cm") { return $LT / 1864679.811023622; } elsif ($units eq "mm") { return $LT / 186467.981102362; } elsif ($units eq "dd") { return $LT / 70124.086430424; } elsif ($units eq "cc") { return $LT / 841489.037165082; } elsif ($units eq "sp") { return $LT; } }
Subroutine setLineThickness
takes two arguments: the value of the variable
$xunits
and a string denoting the linethickness. It returns the linthickness
expressed in the units of the $xunits
.
<subroutine setLineThickness >= (<-U) sub setLineThickness { my $Xunits = shift; my $LT = shift; $Xunits =~ s/^((\+|-)?\d+(\.\d+)?([eE](\+|-)?\d+)?)//; my $xlength = "$1"; $Xunits =~ s/^\s*($units)//; my $x_in_units = $1; $LT =~ s/^((\+|-)?\d+(\.\d+)?([eE](\+|-)?\d+)?)//; my $LTlength = "$1"; $LT =~ s/^\s*($units)//; my $LT_in_units = $1; $LTlength = X2sp($LTlength,$LT_in_units); $LTlength = sp2X($LTlength,$x_in_units); return $LTlength; }
The subroutine process_input
accepts one argument which is a file handle
that corresponds to the file that the subroutine is supposed to process.
The processing cycle is fairly simple: we input one line at the time, remove
any leading space characters and the trailing new line character, and then
start the actual processing. The variable $INFILE
contains the name of
the input file and the variable $lc
is the local line counter. The
commands beginSkip
and endSkip
can be used to ignore blocks
of code and so we need to process them here. The variable $no_output
is used as a switch to toggle from process mode to no-precess mode.
If the first token is beginSkip
, we set the variable $no_output
to 1,
print a comment to the output file and continue with the next input line.
If the first token is endSkip
, we check whether we are in a no-process
mode. If this is the case, we revert to process mode; otherwise we print
an error message. Finally, depending on whether we are in process or no-process
mode we process the input text or simply printed commented out to the output
file. Note, that we don't allow nested comment blocks, as this makes really
no sense!
<subroutine process_input >= (<-U) sub process_input { my ($INFILE,$currInFile) = @_; my $lc = 0; my $no_output = 0; $curr_in_file = $currInFile; LINE: while(<$INFILE>) { $lc++; chomp($command = $_); s/^\s+//; if (/^beginSkip\s*/i) { $no_output = 1; print OUT "%%$_" if $comments_on; next LINE; } elsif (/^endSkip\s*/i) { if ($no_output == 0) { PrintErrorMessage("endSkip without beginSkip",$lc); } else { $no_output = 0; } print OUT "%%$_" if $comments_on and !$no_output; next LINE; } elsif ($no_output == 1) { next LINE; } else { if (/^[^\\]/) { my $out_line = mpp($command,$lc) unless /^\\/; #call macro pre-processor $_ = "$out_line\n"; } <process input line> } } }
Each command line starts with a particular token and depending on
which one we have we perform different actions. If the first character
is %
we have a comment line, and depending on the value of the variable
$comments_on
we either output the comment on the output file (default
action) or just ignore it and continue with the next input line. In case the
first token is the name of a valid command we process the command and
output the corresponding code. Otherwise, we print an error message to
the screen and to the log file and continue with the next input line.
Note that the input language is case-insensitive and so one is free to write a
command name using any combination of upper and lower case
letters, e.g., the tokens lAtEx
,
LaTeX
, and latex
are considered exactly the same.
The valid MathsPIC commands are the following (don't pay attention
to the case!):
drawAngleArc
and drawAngleArrow
are used to draw an arc and an
arrow, respectively. Since, their user interface is identical, we process
them as if they were identical commands.
drawcircle
is used to draw a circle with a specified radius.
drawCircumCircle
is used to draw the circumcircle of triangle
specified by three points.
drawexcircle
is used to draw the excircle of triangle
relative to a given side of the triangle.
drawincircle
is used to draw the incircle of triangle.
drawincurve
is used to draw a curve that passes through a number of points.
drawline
is used to draw either
a line (not necessarily a straight one) or a number of lines from a list
or lists of points. The lines are specified as pairs of points that can
be separated by blank spaces.
drawthickline
is used to draw either
a thick line (not necessarily a straight one) or a number of lines from a list
or lists of points. The lines are specified as pairs of points that can
be separated by blank spaces.
drawPerpendicular
draws a perpendicular line from point A to
line BC.
drawpoint
is used to draw one, two or more points.
The point names can be separated by blanks.
drawRightAngle
draws an angle, specified by three points,
of a size specified by a side length.
drawsquare
draws a square, centered at the coordinates of the
first arguments, which is assumed to be a point, with side equal to the
second argument.
inputfile*
is used to verbatim include a file into the output
file.
inputfile
is used to include a MathsPIC program file
into the main file.
linethickness
should be used to set the thickness of lines.
paper
command sets the paper scale, size, axes, etc. The most
general format of the command follows:
point*
allocates new co-ordinates and optionally
a TEX point-name, to an existing point-name.
Command point
allocates co-ordinates and, optionally a TEX
point character, to a new point-name. Since, both commands have
identical syntax, we handle them together.
PointSymbol
is used to set or reset the default
point symbol, i.e., when one plots a point this is the symbol that will
appear on the final DVI/PostScript file.
setPointNumber
was used to set the length of the arrays that keep the
various point related information. Since, in Perl arrays are dynamic objects
and one can push as many objects as he/she wants, the command is implemented
as an no-op. For reasons of compatibility, we only check the syntax of the
command.
showAngle
and showArea
can be used to get
the angle or the area determined by three points. In addition, the command
showLenght
can be used to get the length between two points. These three
commands produce a comment to the output file.
system
command provides a shell escape.
text
command is used to put a symbol/text at a
particular point location.
var
is used to store a numeric value into a comma separated
list of variables.
const
is used to store a numeric value into a comma separated
list of variables, whose value cannot be altered.
\
, then we copy verbatim this
line to the output file. In case the second character is a space character,
then we simply output a copy of the line without the leading backslash.
<process input line>= (<-U) if (/^\s*%/) { print OUT "$_" if $comments_on; } elsif (s/^\s*(beginloop(?=\W))//i) { s/\s+//; my $times = expr($lc); print OUT "%% BEGINLOOP $times\n" if $comments_on; my @C = (); REPEATCOMMS: while (<$INFILE>) { if (/^\s*endloop/i) { last REPEATCOMMS; } else { push @C, $_; } } if (! /^\s*endloop/i) { PrintFatalError("unexpected end of file",$lc); } else { s/^\s*endloop//i; for(my $i=1; $i<=$times; $i++) { tie *DUMMY, 'DummyFH', \@C; process_input(DUMMY, $currInFile); untie *DUMMY; } print OUT "%% ENDLOOP\n" if $comments_on; } } elsif (s/^\s*(ArrowShape(?=\W))//i) { my $cmd = $1; print OUT "%% $cmd$_" if $comments_on; <process ArrowShape command> } elsif (s/^\s*(const(?=\W))//i) { print OUT "%% $1$_" if $comments_on; <process const command> } elsif (s/^\s*(dasharray(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process dasharray command> } elsif (s/^\s*(drawAngleArc(?=\W))//i or s/^\s*(drawAngleArrow(?=\W))//i ) { my $cmd = $1; print OUT "%% $cmd$_" if $comments_on; <process drawAngleArcOrArrow command> } elsif (s/^\s*(drawArrow(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; DrawLineOrArrow(0,$lc); } elsif (s/^\s*(drawcircle(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process drawcircle command> } elsif (s/^\s*(drawcurve(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; DrawLineOrArrow(2,$lc); } elsif (s/^\s*(drawcircumcircle(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process drawcircumcircle command> } elsif (s/^\s*(drawexcircle(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process drawexcircle command> } elsif (s/^\s*(drawincircle(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process drawincircle command> } elsif (s/^\s*(drawline(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; DrawLineOrArrow(1,$lc); } elsif (s/^\s*(drawthickarrow(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\large .})%\n"; print OUT "{\\setbox1=\\hbox{\\usefont{OT1}{cmr}{m}{n}\\large .}%\n"; print OUT " \\global\\linethickness=0.31\\wd1}%\n"; DrawLineOrArrow(0,$lc); print OUT "\\setlength{\\linethickness}{0.4pt}%\n"; print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n"; } elsif (s/^\s*(drawthickline(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\large .})%\n"; print OUT "{\\setbox1=\\hbox{\\usefont{OT1}{cmr}{m}{n}\\large .}%\n"; print OUT " \\global\\linethickness=0.31\\wd1}%\n"; DrawLineOrArrow(1,$lc); print OUT "\\setlength{\\linethickness}{0.4pt}%\n"; print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n"; } elsif (s/^\s*(drawperpendicular(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process drawPerpendicular command> } elsif (s/^\s*(drawpoint(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process drawpoint command> } elsif (s/^\s*(drawRightAngle(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process drawRightAngle command> } elsif (s/^\s*(drawsquare(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process drawsquare command> } elsif (s/^\s*inputfile\*//i) { <process inputfile* command> } elsif (s/^\s*(inputfile(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process inputfile command> } elsif (s/^\s*(linethickness(?=\W))//i) { my $cmd = $1; print OUT "%% $cmd$_" if $comments_on; <process linethickness command> } elsif (s/^\s*(paper(?=\W))//i) { my ($cmd) = $1; print OUT "%% $cmd$_" if $comments_on; <process paper command> } elsif (s/^\s*(PointSymbol(?=\W))//i) { my $cmd = $1; print OUT "%% $cmd$_" if $comments_on; <process PointSymbol command> } elsif (s/^\s*point(?=\W)//i) { my ($Point_Line); chomp($Point_Line=$_); <process point/point* commands> } elsif (/^\s*setPointNumber(?=\W)/i) { PrintWarningMessage("Command setPointNumber is ignored",$lc); next LINE; } elsif (s/^\s*(showAngle(?=\W))//i) { <process showAngle command> } elsif (s/^\s*(showArea(?=\W))//i) { <process showArea command> } elsif (s/^\s*(showLength(?=\W))//i) { <process showLength command> } elsif (/^\s*showPoints(?=\W)/i) { print OUT "%%-------------------------------------------------\n"; print OUT "%% L I S T O F P O I N T S \n"; print OUT "%%-------------------------------------------------\n"; foreach my $p (keys(%PointTable)) { my ($x, $y, $pSV, $pS) = unpack("d3A*",$PointTable{$p}); printf OUT "%%%%\t%s\t= ( %.5f, %.5f ), LF-radius = %.5f, symbol = %s\n", $p, $x, $y, $pSV, $pS; } print OUT "%%-------------------------------------------------\n"; print OUT "%% E N D O F L I S T O F P O I N T S \n"; print OUT "%%-------------------------------------------------\n"; next LINE; } elsif (/^\s*showVariables(?=\W)/i) { print OUT "%%-------------------------------------------------\n"; print OUT "%% L I S T O F V A R I A B L E S \n"; print OUT "%%-------------------------------------------------\n"; foreach my $var (keys(%VarTable)) { print OUT "%%\t", $var, "\t=\t", $VarTable{$var}, "\n"; } print OUT "%%-------------------------------------------------\n"; print OUT "%% E N D O F L I S T O F V A R I A B L E S \n"; print OUT "%%-------------------------------------------------\n"; next LINE; } elsif (s/^\s*(system(?=\W))//i) { print OUT "%% $1$_" if $comments_on; <process system command> } elsif (s/^\s*(text(?=\W))//i) { print OUT "%% $1$_" if $comments_on; <process text command> } elsif (s/^\s*(var(?=\W))//i) { print OUT "%% $1$_" if $comments_on; <process var command> } elsif (/^\s*\\(.+)/) { my $line = $1; if ($line =~ /^\s+(.+)/) { print OUT " $line\n"; } else { print OUT "\\$line\n"; } next LINE; } elsif (0==length) #empty line { next LINE; } else { PrintErrorMessage("command not recognized",$lc); next LINE; }
Command dasharray
takes an arbitrary number of arguments that are used to
specify a dash pattern. Its general syntax follows:
<process dasharray command>= (<-U) chk_lparen($cmd,$lc); my @DashArray = (); my $dash = ""; my $dashpattern = ""; PATTERN: while (1) { $dash = sprintf("%.5f", expr($lc)); if (s/^\s*($units)//i) { push (@DashArray, "$dash$1"); } else { PrintErrorMessage("Did not found unit after expression", $lc); } s/\s*//; if (/^[^,]/) { last PATTERN; } else { s/^,\s*//; } } print OUT "\\setdashpattern <"; while (@DashArray) { $dashpattern .= shift @DashArray; $dashpattern .= ","; } $dashpattern =~ s/,$//; print OUT $dashpattern, ">\n"; chk_rparen("arguments of $cmd",$lc); chk_comment($lc);
The command drawAngleArc
draws an arc in the specified angle, a
distance radius from the angle. The angle is either internal
(<= 180 degrees) or external (>180 degrees). The direction of the
arc is either clockwise or anticlockwise. The command
drawAngleArrow
draws an arrow just like the command drawAngleArc
draws an arc. The syntax of these commands is as follows:
cmds ::= ( "drawAngleArc" | "drawAngleArrow" ) args args ::= "{" angle comma radius comma internal comma clockwise "}" angle ::= "angle" "(" three-points ")" radius ::= "radius" "(" distance ")" distance ::= expression internal ::= "internal" | "external" clockwise ::= "clockwise" | "anticlockwise" comma ::= "," | emptyWe first collect all relevant information by parsing the
args
and then
call the either the subroutine drawAngleArc
or the subroutine
drawAngleArrow
to produce the actual code
which is then printed into the output file. In order to be able to distinguish
which command we are dealing with we simply use the variable $cmd
.
We now start parsing the input line. We first check whether there is a
left curly bracket. Next, we parse the angle
, the distance
, the
internal
and the clockwise
parts of the command. Finally, we check
for right curly bracket and a trailing comment. Depending on
the value of
the variable $cmd
we call either the subroutine drawAngleArc
or the
subroutine drawAngleArrow
. These subroutines return the code that will be
finally output to the output file.
<process drawAngleArcOrArrow command>= (<-U) chk_lcb($cmd,$lc); <process angle part of command> s/^,\s*// or s/\s*//; #parse optional comma <process radius part of command> s/^,\s*// or s/\s*//; #parse optional comma my $inout = ""; if (s/^(internal(?=\W))//i or s/^(external(?=\W))//i) { $inout = $1; } else { PrintErrorMessage("Did not find expected 'internal' specifier", $lc); next LINE; } s/^,\s*// or s/\s*//; #parse optional comma my $direction = ""; if (s/^(clockwise(?=\W))//i or s/^(anticlockwise(?=\W))//i) { $direction = $1; } else { PrintErrorMessage("Did not find expected 'direction' specifier", $lc); next LINE; } chk_rcb("arguments of $cmd",$lc); chk_comment($lc); my $code; if (lc($cmd) eq "drawanglearc") { $code = drawAngleArc($P1, $P2, $P3, $radius, $inout, $direction); } else { $code = drawAngleArrow($P1, $P2, $P3, $radius, $inout, $direction); } print OUT $code if $code ne "";
We first check whether the first token is the word angle
. In case it
isn't, this yields an unrecoverable error. In case the expected word is
there, we check for a left parenthesis. Next, we parse the three points that
must follow. For this purpose we use the user-defined subroutine
get_point
. Now we check that the angle has a reasonable value, i.e., if
it is less than -400 or equal to zero, the value yields an unrecoverable error.
We finish by checking whether there is a right parenthesis.
<process angle part of command>= (<-U) my ($P1, $P2, $P3); if (s/^angle(?=\W)//i) { chk_lparen("token angle of command $cmd",$lc); $P1 = get_point($lc); next LINE if $P1 eq "_undef_"; $P2 = get_point($lc); next LINE if $P2 eq "_undef_"; $P3 = get_point($lc); next LINE if $P3 eq "_undef_"; my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P1}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$P3}); my $Angle = Angle($x1, $y1, $x2, $y2, $x3, $y3); if ($Angle <= 0) { if ($Angle == 0) { PrintErrorMessage("Angle is equal to zero",$lc); next LINE; } elsif ($Angle < -400) { PrintErrorMessage("Something is wrong with the points",$lc); next LINE; } } chk_rparen("angle part of command $cmd",$lc); } else { PrintErrorMessage("Did not find expected angle part",$lc); next LINE; }
In this section we parse the radius
part of the drawAngleArc
or the
drawAngleArrow
command. We first check whether the next token is the word
radius
. If it is not, then we continue with the next line.
<process radius part of command>= (<-U) my $radius; if (s/^radius(?=\W)//i) { chk_lparen("token radius of command $cmd",$lc); $radius = expr($lc); chk_rparen("radius part of command $cmd",$lc); } else { PrintErrorMessage("Did not found expected angle part",$lc); next LINE; }
Command drawcircle
accepts two arguments--a point name that is
used to specify the center of the circle and the radius of the circle.
The radius is simply an expression, whose value must be greater than zero.
Otherwise, we print an error message and continue with the next input line.
The general syntax of the command is as follows:
"drawcircle" "(" point-name "," rad ")"The code we emit for a point with coordinates
x
and y
and for radius
equal to R
is:
\circulararc 360 degrees from X y center at x ywhere
X = x+R
.
Initially, we check whether there is an opening left parenthesis. Next,
we get the point name by using the subroutine get_point
which
issues an error message if the point hasn't been defined. In this
case we stop processing the command, as there is absolutely no reason to
do otherwise. Next, we parse the comma and then the radius by using
the subroutine ComputeDist
. If there is no problem, we emit the code
and finally we check for a closing right parenthesis and for
possible garbage that may follow the command.
<process drawcircle command>= (<-U) chk_lparen("drawcircle",$lc); my $Point = get_point($lc); next LINE if $Point eq "_undef_"; chk_comma($lc); my $R = expr($lc); if ($R <= 0) { PrintErrorMessage("Radius must be greater than zero",$lc); next LINE; } my ($x,$y,$pSV,$pS)=unpack("d3A*",$PointTable{lc($Point)}); printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n", $x+$R, $y, $x, $y; chk_rparen("arguments of $cmd",$lc); chk_comment($lc);
Command drawcircumcircle
is used to draw the circumcircle of triangle
specified by three points which are the arguments of the command. We start
by parsing the opening left parenthesis. Next, we get the three points
that define the triangle. We are now able to compute the center and
the radius of the circumcircle by calling the subroutine circumCircleCenter
.
If the triangle area is equal to zero, then this subroutine will return
the array (0,0,0)
to indicate this fact.
We now have all necessary information to draw the circumcircle. We use the
following code to do the job:
\circulararc 360 degrees from X y center x ywhere
x
and y
are the coordinates of the center, R
its
radius and X=x+R
. What is left is to check whether there is a
closing right parenthesis and any trailing garbage.
<process drawcircumcircle command>= (<-U) chk_lparen("drawcircumcircle",$lc); my $point1 = get_point($lc); next LINE if $point1 eq "_undef_"; my $point2 = get_point($lc); next LINE if $point2 eq "_undef_"; my $point3 = get_point($lc); next LINE if $point3 eq "_undef_"; my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3}); my ($xc, $yc,$r) = circumCircleCenter($x1,$y1,$x2,$y2,$x3,$y3,$lc); next LINE if $xc == 0 and $yc == 0 and $r == 0; print OUT "%% circumcircle center = ($xc,$yc), radius = $r\n" if $comments_on; printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n", $xc+$r, $yc, $xc, $yc; chk_rparen("arguments of $cmd",$lc); chk_comment($lc);
The syntax of the drawexcircle
command is as follows:
drawexcircle ::= "drawexcircle" "(" ThreePoints "," TwoPoints ")" [ modifier ] modifier ::= "[" expr "]"The
modifier
is an expression that is used to modify the radius of the
excicle. We start by checking whether there is a left parenthesis. Then we
get names of the three points. In case any of the points is not defined
we issue an error message and continue with the next input line. Next, we
check whether there is a comma that separates the three points defining the
triangle from the two points defining a side of the triangle (variables
$point1
, $point2
, and $point3
). Moreover, we must ensure that
the area of the area defined by these points is not equal to
zero. If it is we issue an error message and we continue with the next
input line. Now, we are ready to get the two
point names that define the side of the triangle (variables $point3
and
$point5
). At this point we must make sure that these points are different
points and that they are members of the list of points that define the triangle.
We make this check by calling the subroutine memberOf
. Next, we check
whether there is a closing right parenthesis. We now compute the center
and the radius of the excircle by calling the subroutine excircle
. The
coordinates of the center are stored in the variables $xc
and $yc
,
while the radius is stored in the variable $r
. If the next
non-blank input character is a left square bracket, then we know the user has
specified the optional part. We use the subroutine expr
to get the value of
the optional part. The value of the optional part is stored in the variable $R
.
At this point we check whether the sum of the radius
plus the optional part is equal to zero and if it is we continue with the
next input line. Next, we check for a closing right square bracket. We are
now ready to emit the source code. The first thing we must check is that
the radius is not too big for PiCTeX, i.e., not greater than 500/2.845.
Then we print some informative text to the output file and of course the
actual code. We use the following code to do the job:
\circulararc 360 degrees from (xc+R) yc center xc ycThe last thing we check is whether there is some trailing garbage.
<process drawexcircle command>= (<-U) chk_lparen("drawexcircle",$lc); my $point1 = get_point($lc); next LINE if $point1 eq "_undef_"; my $point2 = get_point($lc); next LINE if $point2 eq "_undef_"; my $point3 = get_point($lc); next LINE if $point3 eq "_undef_"; my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3}); if (triangleArea($x1, $y1, $x2, $y2, $x3, $y3) < 0.0001) { PrintErrorMessage("Area of triangle is zero!",$lc); next LINE; } chk_comma($lc); my $point4 = get_point($lc); if (!memberOf($point4, $point1, $point2, $point3)) { PrintErrorMessage("Current point isn't a side point",$lc); next LINE; } next LINE if $point4 eq "_undef_"; my $point5 = get_point($lc); next LINE if $point5 eq "_undef_"; if (!memberOf($point5, $point1, $point2, $point3)) { PrintErrorMessage("Current point isn't a side point",$lc); next LINE; } if ($point4 eq $point5) { PrintErrorMessage("Side points are identical",$lc); next LINE; } chk_rparen("arguments of $cmd",$lc); my ($xc, $yc, $r) = excircle($point1, $point2, $point3, $point4, $point5); my $R=$r; if (s/^\s*\[\s*//) { $R += expr($lc); if ($R < 0.0001) { PrintErrorMessage("Radius has become equal to zero!",$lc); next LINE; } chk_rsb($lc); } if ($R > (500 / 2.845)) { PrintErrorMessage("Radius is greater than 175mm!",$lc); next LINE; } print OUT "%% excircle center = ($xc,$yc) radius = $R\n" if $comments_on; printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n", $xc+$R, $yc, $xc, $yc; chk_comment($lc);
The syntax of the drawincircle
command is as follows:
drawincircle ::= "drawincircle" "(" ThreePoints ")" [ modifier] modifier ::= "[" expr "]"where
ThreePoints
correspond to the points defining the triangle and
modifier
is an optional modification factor.
The first thing we do is to check whether
there is an opening left parenthesis. Then we get the names of the three
points that define the triangle (variables $point1
, $point2
,
and $point3
). Next, we make sure that the area of the
triangle defined by these three points is not equal to zero. If it is, then
we issue an error message and continue with the next input line. Now, we
compute the center and the radius of the incircle (variables $xc
, $yc
,
and $r
). If the next non-blank input character is a left square bracket,
then we now the user has specified the optional part. We use subroutine
expr
to get the value of the optional part. The value of
the optional part
is stored in the variable $R
. At this point we check whether the sum of the
radius plus the optional part is equal to zero and if it is we continue with
the next input line. Next, we check for a closing right square bracket.
We are now ready to emit the source code. The first thing we must check is
that the radius is not too big for PiCTeX, i.e., not greater than 500/2.845.
Then we print some informative text to the output file and of course the
actual code. We use the following code to do the job:
\circulararc 360 degrees from (xc+R) yc center xc ycThe last thing we check is whether there is some trailing garbage.
<process drawincircle command>= (<-U) chk_lparen("drawincircle",$lc); my $point1 = get_point($lc); next LINE if $point1 eq "_undef_"; my $point2 = get_point($lc); next LINE if $point2 eq "_undef_"; my $point3 = get_point($lc); next LINE if $point3 eq "_undef_"; my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3}); if (triangleArea($x1, $y1, $x2, $y2, $x3, $y3) < 0.0001) { PrintErrorMessage("Area of triangle is zero!",$lc); next LINE; } my ($xc, $yc, $r) = IncircleCenter($x1,$y1,$x2,$y2,$x3,$y3); my $R=$r; if (s/^\s*\[\s*//) { $R += expr($lc); if ($R < 0.0001) { PrintErrorMessage("Radius has become equal to zero!",$lc); next LINE; } chk_rsb($lc); } if ($R > (500 / 2.845)) { PrintErrorMessage("Radius is greater than 175mm!",$lc); next LINE; } print OUT "%% incircle center = ($xc,$yc) radius = $R\n" if $comments_on; printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n", $xc+$R, $yc, $xc, $yc; chk_rparen("arguments of $cmd",$lc); chk_comment($lc);
The command drawPerpendicular
command draws a line from point A to line
BC, such that it is perpendicular to line BC. The general syntax of the
command is as follows:
drawPenpedicular ::= "drawPenpedicular" "(" Point "," TwoPoints ")"The first thing we do is to parse the left parenthesis. Then we parse the name of the first point, namely
$A$
. If this point is undefined
we print an error message and continue with the next line. Next, we parse
the expected leading comma and the names of the other two points. Certainly,
in case either of these two points has not been defined, we simply print an
error message and continue with the next input line. Finally, we check for
a closing right parenthesis and a possible trailing comment. Now we are
ready to compute the coordinates of the foot of the
perpendicular line. We do so my calling subroutine
perpendicular
. Certainly, before we do this we have to get the
coordinates of the points that we have parsed. Finally, we output the
PiCTeX code:
\plot x1 y1 xF xY /where
x1
and y1
are coordinates of the point A and xF
and yF
the coordinates of the foot.
<process drawPerpendicular command>= (<-U) chk_lparen($cmd,$lc); my $A = get_point($lc); next LINE if $A eq "_undef_"; chk_comma($lc); my $B = get_point($lc); next LINE if $A eq "_undef_"; s/\s*//; #ignore white space my $C = get_point($lc); next LINE if $A eq "_undef_"; chk_rparen("arguments of $cmd",$lc); chk_comment($lc); # #start actual computation # my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$A}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$B}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$C}); my ($xF, $yF) = perpendicular($x1, $y1, $x2, $y2, $x3, $y3); printf OUT "\\plot %.5f %.5f %.5f %.5f /\n", $x1, $y1, $xF, $yF;
The drawpoint
command has a number of points as arguments and produces
PiCTeX code that draws a plot symbol at the coordinates of each point. The
syntax of the command is as follows:
drawpoint ::= "drawpoint" "(" Point { separator Point } ")"The
while
loop is used to consume all points that are
between an opening left parenthesis and a closing right parenthesis. All
points are pushed on the local array PP
. When we have parsed the lists
of points, we call the subroutine drawpoints
to emit the actual PiCTeX code.
Finally, we check whether there is a closing parenthesis
parenthesis, and whether
there is some trailing text that makes no sense. In case there are no points
between the parentheses, then we issue an appropriate error message and
we continue with the next input line.
<process drawpoint command>= (<-U) my ($stacklen); chk_lparen("$cmd",$lc); if (/^\)/) { PrintErrorMessage("There are no point to draw",$lc); next LINE; } my(@PP); DRAWPOINTS:while(1) { if (s/^([^\W\d_]\d{0,4})//i) { #point name $P = $1; if (!exists($PointTable{lc($P)})) { PrintErrorMessage("Undefined point $P",$lc); next DRAWPOINTS; } else { push (@PP,$P); s/\s*//; } } else { last DRAWPOINTS; } } drawpoints(@PP); chk_rparen("arguments of $cmd",$lc); chk_comment($lc);
The syntax of the drawRightAngle
command is as follows:
drawRightAngle "(" ThreePoints "," dist ")" dist ::= expr | TwoPointsBefore we proceed with the actual computation we parse the left parenthesis, the three points, the comma, the
dist
, and the right parenthesis. In case
we have neither three points nor a dist
we print an error message and
continue with the next input line, i.e., these errors are irrecoverable.
The names of the three points are stored in variables $point1
,
$point2
, and $point3
. The value of the distance is stored
in the variable $dist
.
Let's now explain the semantics of this command.Our aim is to draw lines S1-S, S2-S (S1 and S2 are at distance d from B). All the relevant points are depicted in the following figure:
pointOnLine
.pointOnLine
.$point1
, etc. Next we compute the angle BAC. Now
we compute the distance AQ (variable $line1
). The coordinates of point
Q are stored in variables $xQ
and $yQ
. The coordinates of point
S are stored in variables $xS
and $yS
. Now we have to determine the
coordinates of points S1 and S2. These coordinates
are stored in variables $xS1
, $yS1
and $xS2
, $yS2
,
respectively. Finally, we emit the PiCTeX target code.
<process drawRightAngle command>= (<-U) chk_lparen("drawRightAngle",$lc); my $point1 = get_point($lc); next LINE if $point1 eq "_undef_"; my $point2 = get_point($lc); next LINE if $point2 eq "_undef_"; my $point3 = get_point($lc); next LINE if $point3 eq "_undef_"; my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3}); chk_comma($lc); my $dist = expr($lc); chk_rparen("arguments of $cmd",$lc); chk_comment($lc); # #actual computation # my ($Px, $Py) = pointOnLine($x2, $y2, $x1, $y1, $dist); my ($Qx, $Qy) = pointOnLine($x2, $y2, $x3, $y3, $dist); my ($Tx, $Ty) = midpoint($Px, $Py, $Qx, $Qy); my ($Ux, $Uy) = pointOnLine($x2, $y2, $Tx, $Ty, 2*Length($x2, $y2, $Tx, $Ty)); if ($Px == $Ux || $Py == $Uy) { printf OUT "\\putrule from %.5f %.5f to %.5f %.5f \n", $Px,$Py,$Ux,$Uy; } else { printf OUT "\\plot %.5f %.5f\t%.5f %.5f / \n", $Px, $Py,$Ux,$Uy; } if ($Ux == $Qx || $Uy == $Qy) { printf OUT "\\putrule from %.5f %.5f to %.5f %.5f \n", $Ux,$Uy,$Qx,$Qy; } else { printf OUT "\\plot %.5f %.5f\t%.5f %.5f / \n", $Ux, $Uy,$Qx,$Qy; }
The command drawsquare
has two arguments: a point, which specifies the
coordinates of the point where the square will be placed, and a number, which
specifies the length of the side of the square. The syntax of the command is as follows:
$side
variable (see the
line with RWDN
comment).
<process drawsquare command>= (<-U) chk_lparen("drawSquare",$lc); my $p = get_point($lc); chk_comma($lc); my $side = expr($lc); $side = $side - (1.1 * $LineThickness/$xunits); #Suggested by RWDN my ($x,$y,$pSV,$pS) = unpack("d3A*",$PointTable{$p}); printf OUT "\\put {%s} at %.5f %.5f %%drawsquare\n", drawsquare($side), $x, $y; chk_rparen("arguments of $cmd",$lc); chk_comment($lc);
The argument of the inputfile*
command is a file name that is always
enclosed in parentheses:
starred-input-file ::= "inputfile*" "(" file-name ")" file-name ::= (alpha | period) { alpha | period } alpha ::= letter | digit | "_" | "-"Note, that the input file is assumed to contain TeX code. We first check to see if there is a left parenthesis. Then we consume the file name. We check if the file exists and then we copy verbatim the input file to the output file. Next, we check for the closing parenthesis. Now, if there is a trailing comment we copy it to the output file depending on the value of the variable
$comments_on
, else if there is some other
text we simply ignore it and issue a warning message.
<process inputfile* command>= (<-U) chk_lparen("inputfile*",$lc); my $row_in = ""; if (s/^((\w|-|\.)+)//) { $row_in = $1; } else { PrintErrorMessage("No input file name found",$lc); next LINE; } if (!(-e $row_in)) { PrintErrorMessage("File $row_in does not exist",$lc); next LINE; } open(ROW, "$row_in")|| die "Can't open file $row_in\n"; while (defined($in_line=<ROW>)) { print OUT $in_line; } print OUT "%% ... end of input file <$row_in>\n"; close ROW; chk_rparen("input file name",$lc); chk_comment($lc);
The inputfile
command has at most two arguments, second being
optional: a file name enclosed in curly brackets and the number of
times this file should be included in square brackets:
inputfile ::= "inputfile" "(" file-name ")" [ Times ] Times ::= "[" expr "]"Note that the input file is assumed to contain mathspic commands. In addition, if the expression is equal to a decimal number, it is truncated. As in the case of the
inputfile*
command we parse the left parenthesis,
the file name, the right parenthesis and the optional argument if it exists.
In order to process the commands contained in the input file, we call
The subroutine process_input
.
<process inputfile command>= (<-U) chk_lparen("inputfile",$lc); my $comm_in = ""; if (s/^((\w|-|\.)+)//) { $comm_in = $1; } else { PrintErrorMessage("No input file name found",$lc); next LINE; } if (!(-e $comm_in)) { PrintErrorMessage("File $comm_in does not exist",$lc); next LINE; } chk_rparen("input file name",$lc); my $input_times = 1; #default value if (s/^\[//) { $input_times = expr($lc); chk_rsb("optional argument",$lc); } print OUT "%% ... start of file <$comm_in> loop [$input_times]\n"; for (my $i=0; $i<int($input_times); $i++) { open(COMM,"$comm_in") or die "Can't open file $comm_in\n"; print OUT "%%% Iteration number: ",$i+1,"\n"; my $old_file_name = $curr_in_file; process_input(COMM,"File $comm_in, "); $curr_in_file = $old_file_name; close COMM; } print OUT "%% ... end of file <$comm_in> loop [$input_times]\n"; chk_comment($lc);
The linethickness
command should be used to set the thickness of lines.
The command has one argument, which is a length or the word default
.
The default line thickness is 0.4 pt.
<process linethickness command>= (<-U) chk_lparen("linethickness", $lc); if (s/^default//i) { print OUT "\\linethickness=0.4pt\\Linethickness{0.4pt}%%\n"; print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n"; $LineThickness = setLineThickness($xunits,"0.4pt"); } else { my $length = expr($lc); if (s/^\s*($units)//i) { my $units = $1; printf OUT "\\linethickness=%.5f%s\\Linethickness{%.5f%s}%%\n", $length, $units, $length, $units; $LineThickness = setLineThickness($xunits,"$length$units"); my $mag; if ($units eq "pc") { $mag = $length * 12; } elsif ($units eq "in") { $mag = $length * 72.27; } elsif ($units eq "bp") { $mag = $length * 1.00375; } elsif ($units eq "cm") { $mag = $length * 28.45275; } elsif ($units eq "mm") { $mag = $length * 2.845275; } elsif ($units eq "dd") { $mag = $length * 1.07001; } elsif ($units eq "cc") { $mag = $length * 0.08917; } elsif ($units eq "sp") { $mag = $length * 0.000015259; } elsif ($units eq "pt") { $mag = $length; } $mag = 10 * $mag / 1.00278219; printf OUT "\\font\\CM=cmr10 at %.5fpt%%\n", $mag; print OUT "\\setplotsymbol ({\\CM .})%\n"; } else { PrintErrorMessage("Did not found expect units part",$lc); } } chk_rparen("linethickness", $lc); chk_comment($lc);
We first output the input line as a comment into the output file. Now,
after the paper
token we look for an opening brace. Then we process
the units
part of the command, if the token units
is present. Note
that the units
part is optional. Next we process the xrange
and the
yrange
part of the command, which are also optional parts of the command.
We are now ready to process the axis
part. Note, that the user is allowed
to alternatively specify this part with the word axes
.
The variable $axis
is supposed to hold the various data relate to the axis
part. The last
thing we check is the ticks
part. In case the user has not specified
this part we assume that both ticks are equal to zero. If everything is
according to the language syntax, we expect a closing right curly bracket.
Now, that we have all relevant information we can output the rest of the code,
as some parts of it have already been output during parsing. The last thing we
do is to check whether there is any trailing comment.
<process paper command>= (<-U) chk_lcb("paper", $lc); if (s/^units(?=\W)//i) { <process unit part> $nounits = 0; } else { $nounits = 1; } s/^,\s*// or s/\s*//; if (s/^xrange//i) { <process xrange part> $noxrange = 0; } else { $noxrange = 1; } s/^,\s*// or s/\s*//; if (s/^yrange//i) { <process yrange part> $noyrange = 0; } else { $noyrange = 1; } <generate plot area related commands> s/^,\s*// or s/\s*//; $axis = ""; if (s/^ax[ei]s(?=\W)//i) { <process axis part> } $axis = uc($axis); s/^,\s*// or s/\s*//; if (s/^ticks(?=\W)//i) { <process ticks part> } else { $xticks = $yticks = 0; } chk_rcb("paper", $lc); <generate the rest of the code for the paper command> chk_comment($lc);
We first check whether there is a left parenthesis. Next, we check whether there is decimal number or a variable name. In case there isn't one we assume it is the number 1. Now, we get the units. If there is no valid unit, we issue an error and the x-unit is set to its default value. In case, there is a trailing comma, we assume the user wants also to specify the y-unit and we process this part just like we did with the x-unit part. Finally, we output the corresponding PiCTeX command. In case there is no y-unit we assume it is equal to the x-unit.
<process unit part>= (<-U) chk_lparen("units",$lc); if(s/^\)//) { PrintWarningMessage("Missing value in \"units\"--default is 1pt", $lc); $xunits = "1pt"; } else { $xunits = expr($lc); s/\s*//; if (s/^($units)//i) { $xunits .= "$1"; $LineThickness = setLineThickness($xunits,"0.4pt"); } elsif(s/^(\w)+//i) { PrintErrorMessage("$1 is not a valid mathspic unit",$lc); $xunits = "1pt"; } else { PrintErrorMessage("No x-units found",$lc); $xunits = "1pt"; } s/\s*//; #ignore white space if (s/^,//) { # there is a comma so expect an y-units s/\s*//; #ignore white space $yunits = expr($lc); s/\s*//; #ignore white space if (s/^($units)//i) { $yunits .= "$1"; } elsif(s/^(\w)+//i) { PrintErrorMessage("$1 is not a valid mathspic unit",$lc); $yunits = "1pt"; } else { PrintErrorMessage("No y-units found",$lc); $yunits = $xunits; } } else { $yunits = $xunits; } chk_rparen("units",$lc); }
The xrange
token must be followed by a left parenthesis, so we
check whether the next token is a left parenthesis. We store in the variables
$xlow
and $xhigh
the values of the range. The range is specified
as pair of decimal numbers/variable/pair of points, separated by a
comma. We use the subroutine ComputeDist
to get the value of the lower
end and the upper end of the range. The last thing we check is whether
the lower end is less than the upper end. If this isn't the case we
issue an error message and we skip into the next input line.
<process xrange part>= (<-U) chk_lparen("xrange",$lc); my $ec; ($xlow,$ec) = ComputeDist($lc); next LINE if $ec == 0; chk_comma($lc); ($xhigh,$ec) = ComputeDist($lc); next LINE if $ec == 0; if ($xlow >= $xhigh) { PrintErrorMessage("xlow >= xhigh in xrange",$lc); next LINE; } chk_rparen("$xhigh",$lc);
The yrange
token must be followed by a left parenthesis, so we
check whether the next token is a left parenthesis. We store in the variables
$ylow
and $yhigh
the values of the range. The range is specified
as pair of decimal numbers/variable/pair of points, separated by a
comma. We use the subroutine ComputeDist
to get the value of the lower
end and the upper end of the range. The last thing we check is whether
the lower end is less than the upper end. If this isn't the case we
issue an error message and we skip into the next input line.
<process yrange part>= (<-U) chk_lparen("yrange",$lc); my $ec; ($ylow,$ec) = ComputeDist($lc); next LINE if $ec == 0; chk_comma($lc); ($yhigh,$ec) = ComputeDist($lc); next LINE if $ec == 0; if ($ylow >= $yhigh) { PrintErrorMessage("ylow >= yhigh in yrange",$lc); next LINE; } chk_rparen("$yhigh",$lc);
The showAngle
command has three arguments that correspond to three distinct
points and emits a comment of the form:
<process showAngle command>= (<-U) chk_lparen("showangle",$lc); my $point_1 = get_point($lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); my $point_2 = get_point($lc); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); my $point_3 = get_point($lc); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3}); my $angle = Angle($x1, $y1, $x2, $y2, $x3, $y3); $angle = 0 if $angle == -500; printf OUT "%%%% angle(%s%s%s) = %.5f deg ( %.5f rad)\n", $point_1, $point_2, $point_3, $angle, $angle*D2R; chk_rparen("Missing right parenthesis", $lc);
The showArea
command has three arguments that correspond to three distinct
points and emits a comment of the form:
<process showArea command>= (<-U) chk_lparen("showarea",$lc); my $point_1 = get_point($lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); my $point_2 = get_point($lc); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); my $point_3 = get_point($lc); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3}); print OUT "%% area($point_1$point_2$point_3) = ", triangleArea($x1, $y1, $x2, $y2, $x3, $y3), "\n"; chk_rparen("Missing right parenthesis", $lc);
The showLength
command has two arguments that correspond to two distinct
points and emits a comment of the form:
<process showLength command>= (<-U) chk_lparen("showlength",$lc); my $point_1 = get_point($lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); my $point_2 = get_point($lc); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); print OUT "%% length($point_1$point_2) = ", Length($x1, $y1, $x2, $y2), "\n"; chk_rparen("Missing right parenthesis", $lc);
If the user hasn't specified units then we use the previous values to
set the coordinate system. If the user hasn't specified either the
xunits
part or the yunits
, then we don't emit code. In case he/she
has specified both parts we generate the command that sets the plot area.
<generate plot area related commands>= (<-U) if (!$nounits) { printf OUT "\\setcoordinatesystem units <%s,%s>\n", $xunits,$yunits; } if(!$noxrange && !$noyrange) { printf OUT "\\setplotarea x from %.5f to %.5f, y from %.5f to %.5f\n", $xlow, $xhigh, $ylow, $yhigh; }
We first check to see whether there is an opening left parenthesis. Next
we get the various options the user may have entered. The valid options
are the letters L, R, T, B, X, and Y. These letters may be followed by
an optional star *
with space characters between the letter and the star.
We use a loop, that stops when a right parenthesis is found, to
go through all
possible arguments and append each argument in the string $axis
. Note
one can have blank space between different arguments. The last thing we do is
to check for the closing right parenthesis.
<process axis part>= (<-U) chk_lparen("axis",$lc); while(/^[^\)]/) { if (s/^([lrtbxy]{1}\*?)//i) { $axis .= $1; } elsif (s/^([^lrtbxy])//i) { PrintErrorMessage("Non-valid character \"$1\" in axis()",$lc); } s/\s*//; } chk_rparen("axis(arguments",$lc);
As usual we start by skipping white space. Next we check whether there is
an opening left parenthesis. Now, we expect two numbers/variables/pair of
point representing the ticks
increment value. These ticks
increment
values must be separated by a comma (and possibly some white space around
them). We use the subroutine ComputeDist
to get the value of the ticks
increment value and we assign to the variables $xticks
and $yticks
the value of x-ticks and y-ticks increment value. In case there is a
problem we issue an error message and continue with the next line. The last
thing we check is whether there is a closing right parenthesis.
<process ticks part>= (<-U) chk_lparen("ticks",$lc); my $ec; ($xticks,$ec) = ComputeDist($lc); next LINE if $ec == 0; chk_comma($lc); ($yticks,$ec) = ComputeDist($lc); next LINE if $ec == 0; chk_rparen("ticks(arguments",$lc);
We actually emit code if the user has specified either the X
or
Y
option in the axis
part. If the user has specified the
Y*
or the X*
option in the axis part, we just emit the commands
\axis left shiftedto x=0
or \axis bottom shiftedto y=0
respectively
and exit. If the use has specified ticks, then, depending on the options
he had supplied with the axis
part, we emit code that
implements the user's wishes.
**** HERE WE MUST EXPLAIN THE MEANING OF THE CODE EMITTED!!! *****
<generate the rest of the code for the paper command>= (<-U) YBRANCH: { if (index($axis, "Y")>-1) { if (index($axis, "Y*")>-1) { print OUT "\\axis left shiftedto x=0 / \n"; last YBRANCH; } if ($yticks > 0) { if (index($axis, "T")>-1 && index($axis, "B")==-1) { print OUT "\\axis left shiftedto x=0 ticks numbered from "; print OUT "$ylow to -$yticks by $yticks\n from $yticks to "; print OUT $yhigh-$yticks," by $yticks /\n"; } elsif (index($axis, "T")==-1 && index($axis, "B")>-1) { print OUT "\\axis left shiftedto x=0 ticks numbered from "; print OUT $ylow+$yticks," to -$yticks by $yticks\n from "; print OUT "$yticks to $yhigh by $yticks /\n"; } elsif (index($axis, "T")>-1 && index($axis, "B")>-1) { print OUT "\\axis left shiftedto x=0 ticks numbered from "; print OUT $ylow+$yticks," to -$yticks by $yticks\n from "; print OUT "$yticks to ",$yhigh-$yticks," by $yticks /\n"; } else { print OUT "\\axis left shiftedto x=0 ticks numbered from "; print OUT "$ylow to -$yticks by $yticks\n from "; print OUT "$yticks to $yhigh by $yticks /\n"; } } else { print OUT "\\axis left shiftedto x=0 /\n"; } } } XBRANCH: { if (index($axis, "X")>-1) { if (index($axis, "X*")>-1) { print OUT "\\axis bottom shiftedto y=0 /\n"; last XBRANCH; } if ($xticks > 0) { if (index($axis, "L")>-1 && index($axis, "R")==1) { print OUT "\\axis bottom shiftedto y=0 ticks numbered from "; print OUT $xlow + $xticks," to -$xticks by $xticks\n from"; print OUT " $xticks to $xhigh by $xticks /\n"; } elsif (index($axis, "L")==-1 && index($axis, "R")>-1) { print OUT "\\axis bottom shiftedto y=0 ticks numbered from "; print OUT "$xlow to -$xticks by $xticks\n from "; print OUT "$xticks to ",$xhigh-$xticks," by $xticks /\n"; } elsif (index($axis, "L")>-1 && index($axis, "R")>-1) { print OUT "\\axis bottom shiftedto y=0 ticks numbered from "; print OUT $xlow + $xticks," to -$xticks by $xticks\n from "; print OUT "$xticks to ",$xhigh - $xticks," by $xticks /\n"; } else { print OUT "\\axis bottom shiftedto y=0 ticks numbered from "; print OUT "$xlow to -$xticks by $xticks\n from "; print OUT "$xticks to $xhigh by $xticks /\n"; } } else { print OUT "\\axis bottom shiftedto y=0 /\n"; } } } LBRANCH: {if (index($axis, "L")>-1) { if (index($axis, "L")>-1) { if (index($axis, "L*")>-1) { print OUT "\\axis left /\n"; last LBRANCH; } if ($yticks > 0) { print OUT "\\axis left ticks numbered from "; print OUT "$ylow to $yhigh by $yticks /\n"; } else { print OUT "\\axis left /\n"; } } } } RBRANCH: { if (index($axis, "R")>-1) { if (index($axis, "R*")>-1) { print OUT "\\axis right /\n"; last RBRANCH; } if ($yticks > 0) { print OUT "\\axis right ticks numbered from $ylow to $yhigh by "; print OUT "$yticks /\n"; } else { print OUT "\\axis right /\n"; } } } TBRANCH: { if (index($axis, "T")>-1) { if (index($axis, "T*")>-1) { print OUT "\\axis top /\n"; last TBRANCH; } if ($xticks > 0) { print OUT "\\axis top ticks numbered from $xlow to $xhigh by "; print OUT "$xticks /\n"; } else { print OUT "\\axis top /\n"; } } } BBRANCH: { if (index($axis, "B")>-1) { if (index($axis, "B*")>-1) { print OUT "\\axis bottom /\n"; last BBRANCH; } if ($xticks > 0) { print OUT "\\axis bottom ticks numbered from $xlow to $xhigh by "; print OUT "$xticks /\n"; } else { print OUT "\\axis bottom /\n"; } } }
The syntax of the point
commands follows:
point[*](PointName){Coordinates}[PointSymbol]where
PointName
is valid point name, Coordinates
is either a
pair of numbers denoting the coordinates of the point or an expression
by means of which the system computes the coordinates of the point, and
the PointSymbol
is a valid TEX
command denoting a point symbol. A valid point name consists of a
letter and at most two trailing digits. That is, the names a11
,
b2
and c
are valid names while qw
and s123
are not.
The first thing we do is to set the point shape to the default symbol
(this has been initialized in the main program). Next, we check whether
we have a point
command or a point*
simply by inspecting the very
next token. Note that there must be no blank spaces between the token
point
and the star symbol. Next, we get the point name: remember that
the point name is surrounded by parentheses. In case we don't find a valid
point name we issue an error message and continue with the next line of
input. Suppose the point name was a valid one. If we have a point*
command we must ensure that the this particular point name has been defined.
If we have a point
command we must ensure that this particular point
name has not been defined. Point names are stored in the hash %PointTable
.
We are now ready to process the coordinates part and the optional
plot symbol part.
<process point/point* commands>= (<-U) my ($pointStar, $PointName, $origPN); $pointStar = 0; # default value: he have a point command $pointStar = 1 if s/^\*//; chk_lparen("point" . (($pointStar)?"*":""),$lc); if (s/^([^\W\d_](?![^\W\d_])\d{0,4})//i) { # # Note: the regular expression (foo)(?!bar) means that we are # looking a foo not followed by a bar. Moreover, the regular # expression [^\W\d_] means that we are looking for letter. # $origPN = $1; $PointName = lc($1); } else { PrintErrorMessage("Invalid point name",$lc); next LINE; } #if ($pointStar and !exists($PointTable{$PointName})) { # PrintWarningMessage("Point $origPN has not been defined",$lc); #} if (!$pointStar and exists($PointTable{$PointName})) { PrintWarningMessage("Point $origPN has been used already",$lc); } chk_rparen("point" . (($pointStar)?"*":""). "($origPN",$lc); chk_lcb("point" . (($pointStar)?"*":""). "($origPN)",$lc); my ($Px, $Py); <process coordinates> chk_rcb("coordinates part",$lc); my $sv = $defaultsymbol; my $sh = $defaultLFradius; my $side_or_radius = undef; if (s/^\[\s*//) { # the user has opted to specify the optional part <process optional point shape part> chk_rsb("optional part",$lc); } # to avoid truncation problems introduced by the pack function, we # round each number up to five decimal digits $Px = sprintf("%.5f", $Px); $Py = sprintf("%.5f", $Py); print OUT "%% point$Point_Line \t$origPN = ($Px, $Py)\n" if $comments_on; chk_comment($lc); $PointTable{$PointName} = pack("d3A*",$Px,$Py,$sh,$sv); if (defined($side_or_radius)) { $DimOfPoint{$PointName} = $side_or_radius; }
In this section we parse the Coordinates
part of the point
command.
The complete syntax of the Coordinates
part follows:
Coordinates ::= Variable | Distance "," Distance | "midpoint" "(" Point-Name Point-Name ")" | "pointOnLine" "(" Two-Points "," Distance ")" | "intersection" "(" Two-Points "," Two-Points ")" | "perpendicular" "(" Point-Name "," Two-Points ")" | "circumCircleCenter" "(" Three-Points ") | "incircleCenter" "(" Three-Points ")" | "excircleCenter" "(" Three-Points "," Two-Points ")" | Point-Name [ "," Modifier ] Modifier ::= "shift" "(" Distance "," Distance ")" | "polar" "(" Distance, Distance [ "deg" | "rad" ] ")" | "rotate" "(" Point-Name, Distance [ "deg" | "rad" ] ")" | "vector" "(" Two-Points ")" Distance ::= expression Two-Points ::= Point-Name Point-Name Three-Points ::= Point-Name Two-PointsWe now briefly explain the functionality of each option:
ComputeDist
to get the
second coordinate. In case the next token is one of the words
perpendicular
, intersection
, midpoint
, pointonline
,
circumcircleCenter
, IncircleCenter
, or ExcircleCenter
we consume the corresponding token and process the corresponding case.
In case the first two tokens are two identifiers, then we assume that we
have a pair of numbers. We compute their distance, check whether there is
a leading comma and compute the y-coordinate by calling subroutine
ComputeDist
. In case the next token is a single identifier, we store
its name in the variable $PointA
. If this identifier is a defined point name,
we check whether the next token is a comma. In case it is, we check whether
he token after the comma is either the token shift
, polar
, or
rotate
and process each case accordingly. If it is
none of these tokens we issue an error message and continue with the next
input line. Now, if the token after the identifier isn't a comma, we assume
that the coordinates of the point will be identical to those of the point
whose name has been stored in the variable $PointA
. If the identifier is a
variable name, we assume that the x-coordinate is the value of this variable.
We check whether the next token is a comma, and compute the y-coordinate by
calling the subroutine ComputeDist
. The x-coordinate is stored in the variable
$Px
and the y-coordinate in the variable $Py
.
<process coordinates>= (<-U) if (s/^perpendicular(?=\W)//i) { <process perpendicular case> } elsif (s/^intersection(?=\W)//i) { <process intersection case> } elsif (s/^midpoint(?=\W)//i) { <process midpoint case> } elsif (s/^pointonline(?=\W)//i) { <process pointonline case> } elsif (s/^circumcircleCenter(?=\W)//i) { <process circumcircleCenter case> } elsif (s/^IncircleCenter(?=\W)//i) { <process IncircleCenter case> } elsif (s/^ExcircleCenter(?=\W)//i) { <process ExcircleCenter case> } elsif (/^[^\W\d_]\d{0,4}\s*[^,\w]/) { m/^([^\W\d_]\d{0,4})\s*/i; if (exists($PointTable{lc($1)})) { my $Tcoord = get_point($lc); my ($x,$y,$pSV,$pS)=unpack("d3A*",$PointTable{$Tcoord}); $Px = $x; $Py = $y; } else { $Px = expr(); chk_comma($lc); $Py = expr(); } } elsif (/[^\W\d_]\d{0,4}\s*,\s*shift|polar|rotate|vector/i) { #a point? s/^([^\W\d_]\d{0,4})//i; my $PointA = $1; if (exists($PointTable{lc($PointA)})) { s/\s*//; if (s/^,//) { s/\s*//; if (s/^shift(?=\W)//i) { <process shift case> } elsif (s/^polar(?=\W)//i) { <process polar case> } elsif (s/^rotate(?=\W)//i) { <process rotate case> } elsif (s/^vector(?=\W)//i) { <process vector case> } else { PrintErrorMessage("unexpected token",$lc); next LINE; } } else { my ($xA,$yA,$pSVA,$pSA)=unpack("d3A*",$PointTable{lc($PointA)}); $Px = $xA; $Py = $yA; } } else { PrintErrorMessage("Undefined point $PointA",$lc); next LINE; } } else { $Px = expr(); chk_comma($lc); $Py = expr(); }
In the following piece of code we process the perpendicular
case of the point
specification. We first check whether there is an
opening left parenthesis. Next, we get the first point name. In case
there is no point name, we simply abandon the processing of this
line and continue with the next one. Then we see whether there is
a trailing comma. Omitting this token yields a non-fatal error.
Then we get two more points. As before, if we can't find any of these
points this yields a fatal-error. Note, that each time we check that the
point names correspond to existing point names. Then, we call subroutine
perpendicular
to calculate the coordinates of the point.
<process perpendicular case>= (<-U) chk_lparen("perpendicular",$lc); my $FirstPoint = &get_point($lc); next LINE if $FirstPoint eq "_undef_"; chk_comma($lc); my $SecondPoint = &get_point($lc); next LINE if $SecondPoint eq "_undef_"; my $ThirdPoint = &get_point($lc); next LINE if $ThirdPoint eq "_undef_"; chk_rparen("No closing parenthesis found",$lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint}); ($Px, $Py) = perpendicular($x1,$y1,$x2,$y2,$x3,$y3);
In the following piece of code we process the intersection
case of the
point
specification. We get the four point names and if there is
no error we compute the intersection point by calling subroutine
intersection
.
<process intersection case>= (<-U) chk_lparen("intersection",$lc); my $FirstPoint = get_point($lc); next LINE if $FirstPoint eq "_undef_"; my $SecondPoint = get_point($lc); next LINE if $SecondPoint eq "_undef_"; chk_comma($lc); my $ThirdPoint = get_point($lc); next LINE if $ThirdPoint eq "_undef_"; my $ForthPoint = get_point($lc); next LINE if $ForthPoint eq "_undef_"; chk_rparen("No closing parenthesis found",$lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint}); my ($x4,$y4,$pSV4,$pS4)=unpack("d3A*",$PointTable{$ForthPoint}); ($Px, $Py) = intersection4points($x1,$y1,$x2,$y2,$x3,$y3,$x4,$y4);
Given two points A and B, the midpoint option computes the coordinates
of a third point that lies on the middle of the line segment defined by
these two points. We get the the two points, and then we compute the
coordinates of the midpoint with function midpoint
.
<process midpoint case>= (<-U) chk_lparen("midpoint",$lc); my $FirstPoint = &get_point($lc); next LINE if $FirstPoint eq "_undef_"; my $SecondPoint = &get_point($lc); next LINE if $SecondPoint eq "_undef_"; chk_rparen("No closing parenthesis found",$lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); ($Px, $Py) = midpoint($x1, $y1, $x2, $y2);
Given two points A and B and length d, the PointOnLine
option
computes the coordinates of a point that lies d units in the direction from
A towards B. We first get the coordinates of the two points that define
the line and then we get the distance, which can be a number, a variable,
or a pair of points.
<process pointonline case>= (<-U) chk_lparen("pointonline",$lc); my $FirstPoint = &get_point($lc); next LINE if $FirstPoint eq "_undef_"; my $SecondPoint = &get_point($lc); next LINE if $SecondPoint eq "_undef_"; chk_comma($lc); # now get the distance my $distance = expr($lc); chk_rparen("No closing parenthesis found",$lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); ($Px, $Py) = pointOnLine($x1,$y1,$x2,$y2,$distance);
The circumcircleCenter
is used when one wants to compute the coordinates
of the center of circle that passes through the three points
of a triangle defined
by the three arguments of the option. All we do is get the coordinates
of the three points and then we call the subroutine circumCircleCenter
to compute the center.
<process circumcircleCenter case>= (<-U) chk_lparen("circumCircleCenter",$lc); my $FirstPoint = &get_point($lc); next LINE if $FirstPoint eq "_undef_"; my $SecondPoint = &get_point($lc); next LINE if $SecondPoint eq "_undef_"; my $ThirdPoint = &get_point($lc); next LINE if $ThirdPoint eq "_undef_"; chk_rparen("No closing parenthesis found",$lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint}); ($Px, $Py,$r) = &circumCircleCenter($x1,$y1,$x2,$y2,$x3,$y3,$lc); next LINE if $Px == 0 and $Py == 0 and $r == 0;
The IncircleCenter
option is to determine the coordinates of a point
that is the center of circle that internally touches the sides
of a triangle defined by three given points.
The coordinates are computed by the subroutine IncircleCenter
.
<process IncircleCenter case>= (<-U) chk_lparen("IncircleCenter",$lc); my $FirstPoint = &get_point($lc); next LINE if $FirstPoint eq "_undef_"; my $SecondPoint = &get_point($lc); next LINE if $SecondPoint eq "_undef_"; my $ThirdPoint = &get_point($lc); next LINE if $ThirdPoint eq "_undef_"; chk_rparen("No closing parenthesis found",$lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint}); ($Px, $Py, $r) = IncircleCenter($x1,$y1,$x2,$y2,$x3,$y3);
The ExcircleCenter
option is used to define the coordinates of point
that is the center of an excircle of a triangle. We first check
whether there is an opening left parenthesis. Next, we get the names of the
three points that define the triangle. Then, we
check whether there is a comma. Now we get the names of the two points that
define one side of the triangle. We check whether the two points we
get are of the set of the triangle points. If not we issue
an error message and continue with the next input line. Then we make sure
that these two points are not identical. We compute the actual
coordinates by calling the subroutine excircle
. Finally, we
make sure there is a closing right parenthesis.
<process ExcircleCenter case>= (<-U) chk_lparen("ExcircleCenter",$lc); my $PointA = get_point($lc); next LINE if $PointA eq "_undef_"; my $PointB = get_point($lc); next LINE if $PointB eq "_undef_"; my $PointC = get_point($lc); next LINE if $PointC eq "_undef_"; chk_comma($lc); my $PointD = &get_point($lc); next LINE if $PointD eq "_undef_"; if (!memberOf($PointD, $PointA, $PointB, $PointC)) { PrintErrorMessage("Current point isn't a side point",$lc); next LINE; } my $PointE = get_point($lc); next LINE if $PointE eq "_undef_"; if (!memberOf($PointE, $PointA, $PointB, $PointC)) { PrintErrorMessage("Current point isn't a side point",$lc); next LINE; } if ($PointD eq $PointE) { PrintErrorMessage("Side points are identical",$lc); next LINE; } ($Px, $Py, $r) = excircle($PointA, $PointB, $PointC, $PointD, $PointE); chk_rparen("after coordinates part",$lc);
The shift
option allows us to define a point's coordinates relative
to the coordinates of an existing point by using two shift parameters. Each
parameter can be either a float, a variable name, or a pair of points.
<process shift case>= (<-U U->) chk_lparen("shift",$lc); my $dist1 = expr($lc); chk_comma($lc); my $dist2 = expr($lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{lc($PointA)}); $Px = $x1 + $dist1; $Py = $y1 + $dist2; chk_rparen("shift part",$lc);
The polar
option allows us to define a point's coordinates relative
to the coordinates of an existing point using the polar coordinates of some
other point. We first check whether there is a left parenthesis,
Then we parse the various parts of the polar
option.
In case the user has specified the angle in degrees, we have
to transform it into radians, as all trigonometric function expect their
arguments to be radians. Next, we compute the coordinates of the point.
We conclude by checking whether there is a closing parenthesis.
<process polar case>= (<-U U->) chk_lparen("polar",$lc); my ($R1, $Theta1); $R1 = expr($lc); chk_comma($lc); $Theta1 = expr($lc); my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{lc($PointA)}); s/\s*//; if (s/^rad(?=\W)//i) { # do nothing! } elsif (s/^deg(?=\W)//i) { $Theta1 = $Theta1 * PI / 180; } else { #$Theta1 = $Theta1 * PI / 180; } $Px = $x1 + $R1 * cos($Theta1); $Py = $y1 + $R1 * sin($Theta1); chk_rparen("after polar part",$lc);
The rotate
option allows us to define a point's coordinates by
rotating an existing point, Q, about a third point, P, by a
specified angle.
The method to achieve this is to first get the coordinates of points
P and Q and then
polar
option, we check for an opening parenthesis.
Next, we parse the point name and the angle. At this point we are able to
compute the coordinates of the rotated point. We conclude by checking
whether there is a closing parenthesis.
<process rotate case>= (<-U) chk_lparen("rotate",$lc); my $Q = lc($PointA); my $P = get_point($lc); next LINE if $P eq "_undef_"; chk_comma($lc); my $Theta1 = expr($lc); my ($xP,$yP,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P}); my ($xQ,$yQ,$pSV2,$pS2)=unpack("d3A*",$PointTable{$Q}); s/\s*//; if (s/^rad(?=\W)//i) { # do nothing! } elsif (s/^deg(?=\W)//i) { $Theta1 = $Theta1 * PI / 180; } else { $Theta1 = $Theta1 * PI / 180; } # shift origin to P $xQ -= $xP; $yQ -= $yP; # do the rotation $Px = $xQ * cos($Theta1) - $yQ * sin($Theta1); $Py = $xQ * sin($Theta1) + $yQ * cos($Theta1); # return origin back to original origin $Px += $xP; $Py += $yP; chk_rparen("after rotate part",$lc);
vector(PQ)
is actually is a shorthand of shift(xQ-xP,yQ-yP)
. Thus, it
is implemented by borrowing code from the shift
modifier.
<process vector case>= (<-U) chk_lparen("vector",$lc); my ($x0,$y0,$pSV0,$pS0) = unpack("d3A*",$PointTable{lc($PointA)}); my $P = get_point($lc); my $Q = get_point($lc); my ($x1,$y1,$pSV1,$pS1) = unpack("d3A*",$PointTable{$P}); my ($x2,$y2,$pSV2,$pS2) = unpack("d3A*",$PointTable{$Q}); $Px = $x0 + $x2 - $x1; $Py = $y0 + $y2 - $y1; chk_rparen("vector part",$lc);
When lines are drawn to a point, the line will (unless otherwise specified) extend to the point location. However, this can be prevented by allocating an optional circular line-free zone to a point by specifying the radius (in square brackets) of the optional point shape part. Currently, in this part we are allowed to describe the point shape and the radius value. If only the radius is specified, e.g., [radius=5], then the line-free zone will be applied to the default point character, i.e., $\bullet$ or whatever it has been set to. Here is the syntax we employ:
Optional_point_shape_part ::= "[" [ symbol_part ] [","] [ radius_part ]" symbol_part ::= "symbol" "=" symbol symbol ::= "circle" "(" expression ")" | "square" "(" expression ")" | LaTeX_Code radius_part ::= "radius" "=" expressionNote that it is possible to have right square bracket in the LaTeX_Code but it has to be escaped (i.e., \]).
<process optional point shape part>= (<-U) if (/^(symbol|radius|side)\s*/i) { my @previous_options = (); my $number_of_options = 1; my $symbol_set = 0; while (s/^(symbol|radius)\s*//i and $number_of_options <= 2) { my $option = lc($1); if (s/^=\s*//) { if (memberOf($option,@previous_options)) { PrintErrorMessage("Option \"$option\" has been already defined", $lc); my $dummy = expr($lc); } elsif ($option eq "radius") { $sh = expr($lc); $sv = $defaultsymbol if ! $symbol_set; } elsif ($option eq "symbol") { if (s/^circle\s*//i) { $sv = "circle"; chk_lparen("after token circle",$lc); $side_or_radius = expr($lc); chk_rparen("expression",$lc); } elsif (s/^square\s*//i) { $sv = "square"; chk_lparen("after token square",$lc); $side_or_radius = expr($lc); chk_rparen("expression",$lc); } elsif (s/^(((\\\]){1}|(\\,){1}|(\\\s){1}|[^\],\s])+)//) { $sv = $1; $sv =~ s/\\\]/\]/g; $sv =~ s/\\,/,/g; $sv =~ s/\\ / /g; s/\s*//; } $symbol_set = 1; } } else { PrintErrorMessage("unexpected token", $lc); next LINE; } $number_of_options++; push (@previous_options, $option); s/^,\s*//; } } else { PrintErrorMessage("unexpected token", $lc); next LINE; }
The ArrowShape
command has either one or three arguments. If the only argument of
the command is the token default
, then the parameters associated with the
arrow shape resume their default values. Now, if there are three arguments, these are
used to specify the shape of an arrow. The command actually sets the three global variables
$arrowLength
, $arrowAngleB
and $arrowAngleC
. Arguments whose value is equal
to zero, do not affect the value of the corresponding global variables. To reset the
values of the global variables one should use the commane with default
as it
only argument. The syntax of the command is as follows:
units
is any valid TeX unit (e.g., "mm", "cm", etc.). Note that if
any of the three expressions is equal to zero, the default value is taken
instead. As direct consequence, if the value of the first expression is zero,
the units part is actually ignored.
<process ArrowShape command>= (<-U) chk_lparen("$cmd",$lc); if (s/^default//i) { $arrowLength = 2; $arrowLengthUnits = "mm"; $arrowAngleB = 30; $arrowAngleC = 40; } else { my ($LocalArrowLength, $LocalArrowAngleB ,$LocalArrowAngleC) = (0,0,0); $LocalArrowLength = expr($lc); if (s/^\s*($units)//i) { $arrowLengthUnits = "$1"; } else { $xunits =~ /(\d+(\.\d+)?)\s*($units)/; $LocalArrowLength *= $1; $arrowLengthUnits = "$3"; } chk_comma($lc); $LocalArrowAngleB = expr($lc); chk_comma($lc); $LocalArrowAngleC = expr($lc); $arrowLength = ($LocalArrowLength == 0 ? 2 : $LocalArrowLength); $arrowLengthUnits = ($LocalArrowLength == 0 ? "mm" : $arrowLengthUnits); $arrowAngleB = ($LocalArrowAngleB == 0 ? 30 : $LocalArrowAngleB); $arrowAngleC = ($LocalArrowAngleC == 0 ? 40 : $LocalArrowAngleC); } chk_rparen("after $cmd arguments",$lc); chk_comment("after $cmd command",$lc); print OUT "%% arrowLength = $arrowLength$arrowLengthUnits, ", "arrowAngleB = $arrowAngleB ", "and arrowAngleC = $arrowAngleC\n" if $comments_on;
The PointSymbol
command is used to set the point symbol and possibly its
line-free radius. The point symbol can be either a LaTeX symbol or the word default
which corresponds to the default point symbol, i.e., $\bullet$. The line-free
radius can be an expression. Here is the complete syntax:
pointsymbol ::= "pointsymbol" ( symbol [ "," radius]) symbol ::= "default" | circle | square | LaTeX_Code circle ::= "circle" "(" expression ")" square ::= "square" "(" expression ")" radius ::= expressionNote that the LaTeX_Code can contain the symbols \, and \) which are escape sequences for a comma and right parenthesis, respectively.
<process PointSymbol command>= (<-U) chk_lparen("$cmd",$lc); if (s/^default//i) #default point symbol { $defaultsymbol = "\$\\bullet\$"; } elsif (s/^(circle|square)//i) { $defaultsymbol = $1; chk_lparen($defaultsymbol, $lc); $GlobalDimOfPoints = expr($lc); chk_rparen("expression", $lc); } elsif (s/^(((\\,){1}|(\\\)){1}|(\\\s){1}|[^\),\s])+)//) #arbitrary LaTeX point { $defaultsymbol = $1; $defaultsymbol=~ s/\\\)/\)/g; $defaultsymbol=~ s/\\,/,/g; $defaultsymbol=~ s/\\ / /g; } else { PrintErrorMessage("unrecognized point symbol",$lc); } if (s/\s*,\s*//) { $defaultLFradius = expr($lc); } chk_rparen("after $cmd arguments",$lc); chk_comment("after $cmd command",$lc);
The system
command provides a shell escape. However, we use a subroutine
to check whether the argument of the command contains tainted data. If this
is the case, then we simply ignore this command. The syntax of the command
is as follows:
system-cmd ::= "system" "(" string ")"where string is just a sequence of characters enclosed in quotation marks. We start by parsing a left parenthesis and then we get the command by calling the subroutine
get_string
. If there is an error we skip this
command. Otherwise, we assign to the variable $_
what is left. Now we check
if the variable $command
contains any tainted data. If it doesn't, we
execute the command, otherwise we print an error message and skip to the
next input line. Next, we check for closing right parenthesis and a possible
trailing comment.
<process system command>= (<-U) chk_lparen("$cmd",$lc); my ($error, $command, $rest) = get_string($_); next LINE if $error == 1; $_ = $rest; if (! is_tainted($command)) { system($command); } else { PrintErrorMessage("String \"$command\" has tainted data", $lc); next LINE; } chk_rparen("after $cmd arguments",$lc); chk_comment("after $cmd command",$lc);
The text
command is used to put a piece of text or a symbol on
a particular point of the resulting graph. The syntax of the command is
as follows:
text-comm ::= "text" "(" text ")" "{"coords"} "[" pos-code "]" text ::= ascii string coords ::= Coord "," Coord | Point-Name "," "shift" "(" Coord "," Coord ")" | Point-Name "," "polar" "(" Coord "," Coord [angle-unit] ")" Coord ::= decimal number | variable | pair-of-Point-Names pair-of-Point-Names ::= Point-Name Point-Name angle-unit ::= "deg" | "rad" pos-code ::= lr-code [tb-code] | tb-code [lr-code] lr-code ::= "l" | "r" tb-code ::= "t" | "b" | "B"Initially, we parse the
text
. Since the text may contain parentheses
we assume that the user enters pairs of matching parentheses. Note, that
this is a flaw in the original design of the language, which may be remedied
in future releases of the software. Then, we check the coords
part. Next,
if there is a left square bracket, we assume the user has specified the
pos-code
. We conclude by checking a possible trailing comment.
The next thing we do is to generate the PiCTeX code. The two possible
forms follow:
<process text command>= (<-U) chk_lparen("text",$lc); my ($level,$text)=(1,""); TEXTLOOP: while (1) { $level++ if /^\(/; $level-- if /^\)/; s/^(.)//; last TEXTLOOP if $level==0; $text .= $1; } chk_lcb("text part",$lc); my ($Px, $Py,$dummy,$pos); $pos=""; s/\s*//; <process coordinates part of text command> chk_rcb("coordinates part of text command",$lc); if (s/^\[//) { s/\s*//; <process optional part of text command> s/\s*//; chk_rsb("optional part of text command",$lc); } chk_comment($lc); if ($pos eq "") { printf OUT "\\put {%s} at %f %f\n", $text, $Px, $Py; } else { printf OUT "\\put {%s} [%s] at %f %f\n", $text, $pos, $Px, $Py; }
In this section we define the code that handles the coordinates part
of the text
command. The code just implements the grammar given above.
If the first token is a number, we assume this is the x-coordinate. If
it is a variable, we assume its value is the x-coordinate. However, if
it is a point name, we check whether the next token is another point name.
In this case we compute the distance between the two points. In case we
have a single point followed by a comma, we expect to have either a polar
or a shift part, which we process the same we processed them in the point
command.
<process coordinates part of text command>= (<-U) if (/^[^\W\d_]\d{0,4}\s*[^,\w]/) { my $Tcoord = get_point($lc); my ($x,$y,$pSV,$pS)=unpack("d3A*",$PointTable{$Tcoord}); $Px = $x; $Py = $y; } elsif (/[^\W\d_]\d{0,4}\s*,\s*shift|polar/i) { s/^([^\W\d_]\d{0,4})//i; my $PointA = $1; if (exists($PointTable{lc($PointA)})) { s/\s*//; if (s/^,//) { s/\s*//; if (s/^shift(?=\W)//i) { <process shift case> } elsif (s/^polar(?=\W)//i) { <process polar case> } } } else { PrintErrorMessage("undefined point/var",$lc); next LINE; } } else { $Px = expr(); chk_comma($lc); $Py = expr(); }
In this section we process the optional part of the text
command.
The general rule is that we are allowed to have up to two options one
from the characters l
and r
and one from the the characters
B
, b
, and t
. We first check whether the next character is
letter, if it isn't we issue an error message and continue with the next
input line. If it is a letter we check whether it belongs to one of the
two groups and if it doesn't we issue an error message and continue with the
next input line. If the next character belongs to first group, i.e., it is
either l
or r
, we store this character into the variable $pos
. Next,
we check whether there is another letter. If it is a letter, we store it
in the variable $np
. Now we make sure that this character belongs to the
other group, i.e., it is either b
, B
, or t
. In case it belongs
to the other group, we append the value of $np
to the string stored in
the variable $pos
. Otherwise we issue an error message and continue with the
next input line. We work similarly for the other case. In order to check
whether a character belongs to some group of characters, we use the user
defined function memberOf
.
<process optional part of text command>= (<-U) if (s/^(\w{1})\s*//) { $pos .= $1; if (memberOf($pos, "l", "r")) { if (s/^(\w{1})\s*//) { my $np = $1; if (memberOf($np, "t", "b", "B")) { $pos .= $np; } else { if (memberOf($np, "l", "r")) { PrintErrorMessage("$np can't follow 'l' or 'r'", $lc); } else { PrintErrorMessage("$np is not a valid positioning option", $lc); } next LINE; } } } elsif (memberOf($pos, "t", "b", "B")) { if (s/^(\w{1})\s*//) { my $np = $1; if (memberOf($np, "l", "r")) { $pos .= $np; } else { if (memberOf($np, "t", "b", "B")) { PrintErrorMessage("$np can't follow 't', 'b', or 'B'", $lc); } else { PrintErrorMessage("$np is not a valid positioning option", $lc); } next LINE; } } } else { PrintErrorMessage("$pos is not a valid positioning option", $lc); next LINE; } } else { PrintErrorMessage("illegal token in optional part of text command",$lc); next LINE; }
The const
command is used to store values into a comma separated
list of named constants. Constant names have the same format as point names,
i.e., they start with a letter and are followed by up to two digits. The
whole operation is performed by a do-while
construct that checks that
there is a valid constant name, a =
sign, and an expression. The
do-while
construct terminates if the next token isn't a comma. Variable
$Constname
is used to store the initial variable name, while we store
in variable $varname
the lowercase version of the variable name. In addition,
we make sure a constant is not redefined (or else it wouldn't be a constant:-).
The last thing we do is to check whether there is a trailing comment.
In case there, we simply ignore itl; otherwise we print a warning message.
<process const command>= (<-U) do{ s/\s*//; PrintErrorMessage("no identifier found after token const",$lc) if $_ !~ s/^([^\W\d_]\d{0,4})//i; my $Constname = $1; my $constname = lc($Constname); if (exists $ConstTable{$constname}) { PrintErrorMessage("Redefinition of constant $constname",$lc); } s/\s*//; #remove leading white space PrintErrorMessage("did not find expected = sign",$lc) if $_ !~ s/^[=]//i; my $val = expr($lc); $VarTable{$constname} = $val; $ConstTable{$constname} = 1; print OUT "%% $Constname = $val\n" if $comments_on; }while (s/^,//); chk_comment($lc); s/\s*//; if (/^[^%]/) { PrintWarningMessage("Trailing text is ignored",$lc); }
The var
command is used to store values into a comma separated
list of named variables. Variable names have the same format as point names,
i.e., they start with a letter and are followed by up to two digits. The
whole operation is performed by a do-while
construct that checks that
there is a valid variable name, a =
sign, and an expression. The
do-while
construct terminates if the next token isn't a comma. The variable
$Varname
is used to store the initial variable name, while we store
in the variable $varname
the lowercase version of the variable name.
The last thing we do is to check whether there is a trailing comment.
In case there, we simply ignore itl; otherwise we print a warning message.
<process var command>= (<-U) do{ s/\s*//; PrintErrorMessage("no identifier found after token var",$lc) if $_ !~ s/^([^\W\d_]\d{0,4})//i; my $Varname = $1; my $varname = lc($Varname); if (exists $ConstTable{$varname}) { PrintErrorMessage("Redefinition of constant $varname",$lc); } s/\s*//; #remove leading white space PrintErrorMessage("did not find expected = sign",$lc) if $_ !~ s/^[=]//i; my $val = expr($lc); $VarTable{$varname} = $val; print OUT "%% $Varname = $val\n" if $comments_on; }while (s/^,//); chk_comment($lc); s/\s*//; if (/^[^%]/) { PrintWarningMessage("Trailing text is ignored",$lc); }