XEmacs User's Manual

July 1994
(General Public License upgraded, January 1991)

Richard Stallman
Lucid, Inc.
and

Ben Wing

Copyright © 1985, 1986, 1988 Richard M. Stallman.

Copyright © 1991, 1992, 1993, 1994 Lucid, Inc.

Copyright © 1993, 1994 Sun Microsystems, Inc.

Copyright © 1995 Amdahl Corporation.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “The GNU Man-
ifesto”, “Distribution” and “GNU General Public License” are included exactly as in the
original, and provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the sections entitled
“The GNU Manifesto”, “Distribution” and “GNU General Public License” may be included
in a translation approved by the author instead of in the original English.

Preface

This manual documents the use and simple customization of the XEmacs editor. The reader
is not expected to be a programmer to use this editor, and simple customizations do not
require programming skills either. Users who are not interested in customizing XEmacs can
ignore the scattered customization hints.

This document is primarily a reference manual, but it can also be used as a primer.
However, if you are new to XEmacs, consider using the on-line, learn-by-doing tutorial,
which you get by running XEmacs and typing C-h t. With it, you learn XEmacs by using
XEmacs on a specially designed file which describes commands, tells you when to try them,
and then explains the results you see. Using the tutorial gives a more vivid introduction
than the printed manual. Also consider reading the XEmacs New User’s Guide, which is
intended specifically as an introductory manual rather than as a reference guide.

On first reading, just skim chapters one and two, which describe the notational conven-
tions of the manual and the general appearance of the XEmacs display frame. Note which
questions are answered in these chapters, so you can refer back later. After reading chapter
four you should practice the commands there. The next few chapters describe fundamental
techniques and concepts that are used constantly. You need to understand them thoroughly,
experimenting with them if necessary.

To find the documentation on a particular command, look in the index. Keys (character
commands) and command names have separate indexes. There is also a glossary, with a
cross reference for each term.

This manual comes in two forms: the published form and the Info form. The Info form
is for on-line perusal with the INFO program; it is distributed along with XEmacs. Both
forms contain substantially the same text and are generated from a common source file,
which is also distributed along with XEmacs.

XEmacs is a member of the Emacs editor family. There are many Emacs editors, all
sharing common principles of organization. For information on the underlying philosophy
of Emacs and the lessons learned from its development, write for a copy of AT memo 519a,
“Kmacs, the Extensible, Customizable Self-Documenting Display Editor”, to Publications
Department, Artificial Intelligence Lab, 545 Tech Square, Cambridge, MA 02139, USA.
At last report they charge $2.25 per copy. Another useful publication is LCS TM-165,
“A Cookbook for an Emacs”, by Craig Finseth, available from Publications Department,
Laboratory for Computer Science, 545 Tech Square, Cambridge, MA 02139, USA. The price
today is $3.

This manual is for XEmacs installed on UNIX systems. XEmacs also exists on Microsoft
Windows and Windows NT as Win-Emacs (which is actually based on Lucid Emacs 19.6,
an older incarnation of XEmacs).

XEmacs User’s Manual

GNU GENERAL PUBLIC LICENSE

Version 1, February 1989

Copyright © 1989 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The license agreements of most software companies try to keep users at the mercy of those
companies. By contrast, our General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. The
General Public License applies to the Free Software Foundation’s software and to any other
program whose authors commit to using it. You can use it for your programs, too.

When we speak of free software, we are referring to freedom, not price. Specifically, the
General Public License is designed to make sure that you have the freedom to give away or
sell copies of free software, that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

1. This License Agreement applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The “Program”, below, refers to any such program or work,
and a “work based on the Program” means either the Program or any work containing
the Program or a portion of it, either verbatim or with modifications. Each licensee is
addressed as “you”.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish

XEmacs User’s Manual

on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this General Public License and to the absence of any warranty;
and give any other recipients of the Program a copy of this General Public License along
with the Program. You may charge a fee for the physical act of transferring a copy.

3. You may modify your copy or copies of the Program or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you
also do the following:

e cause the modified files to carry prominent notices stating that you changed the
files and the date of any change; and

e cause the whole of any work that you distribute or publish, that in whole or in part
contains the Program or any part thereof, either with or without modifications, to
be licensed at no charge to all third parties under the terms of this General Public
License (except that you may choose to grant warranty protection to some or all
third parties, at your option).

e If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the simplest and
most usual way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this General Public License.

e You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

Mere aggregation of another independent work with the Program (or its derivative) on
a volume of a storage or distribution medium does not bring the other work under the
scope of these terms.

4. You may copy and distribute the Program (or a portion or derivative of it, under
Paragraph 2) in object code or executable form under the terms of Paragraphs 1 and
2 above provided that you also do one of the following:

e accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Paragraphs 1 and 2 above; or,

e accompany it with a written offer, valid for at least three years, to give any third
party free (except for a nominal charge for the cost of distribution) a complete
machine-readable copy of the corresponding source code, to be distributed under
the terms of Paragraphs 1 and 2 above; or,

e accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
alone.)

Source code for a work means the preferred form of the work for making modifications
to it. For an executable file, complete source code means all the source code for all
modules it contains; but, as a special exception, it need not include source code for
modules which are standard libraries that accompany the operating system on which
the executable file runs, or for standard header files or definitions files that accompany
that operating system.

5. You may not copy, modify, sublicense, distribute or transfer the Program except as
expressly provided under this General Public License. Any attempt otherwise to copy,
modify, sublicense, distribute or transfer the Program is void, and will automatically
terminate your rights to use the Program under this License. However, parties who
have received copies, or rights to use copies, from you under this General Public License
will not have their licenses terminated so long as such parties remain in full compliance.

6. By copying, distributing or modifying the Program (or any work based on the Program)
you indicate your acceptance of this license to do so, and all its terms and conditions.

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein.

6 XEmacs User’s Manual

8. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of the license which applies to it and “any later version”, you have the option
of following the terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not specify a version
number of the license, you may choose any version ever published by the Free Software
Foundation.

9. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

10. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

11. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to humanity,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) 19 yy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) 19 yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type “show c' for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts
of the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

8 XEmacs User’s Manual

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program ‘Gnomovision’ (a program to direct compilers to make passes
at assemblers) written by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

That’s all there is to it!

Distribution

XEmacs is free; this means that everyone is free to use it and free to redistribute it on a
free basis. XEmacs is not in the public domain; it is copyrighted and there are restrictions
on its distribution, but these restrictions are designed to permit everything that a good
cooperating citizen would want to do. What is not allowed is to try to prevent others from
further sharing any version of XEmacs that they might get from you. The precise conditions
are found in the GNU General Public License that comes with XEmacs and also appears
following this section.

The easiest way to get a copy of XEmacs is from someone else who has it. You need not
ask for permission to do so, or tell any one else; just copy it.

If you have access to the Internet, you can get the latest version of XEmacs from the
anonymous FTP server ‘ftp.xemacs.org’ in the directory ‘/pub/xemacs’. It can also be
found at numerous other archive sites around the world; check the file ‘etc/DISTRIB’ in an
XEmacs distribution for the latest known list.

Getting Other Versions of Emacs

The Free Software Foundation’s version of Emacs (called FSF Emacsin this manual and
often referred to as GNU Emacs) is available by anonymous FTP from ‘prep.ai.mit.edu’.

Win-Emacs, an older version of XEmacs that runs on Microsoft Windows and
Windows NT, is available by anonymous FTP from ‘ftp.netcom.com’ in the directory
‘/pub/pe/pearl’, or from ‘ftp.cica.indiana.edu’ as the files ‘wemdemo*.zip’ in the
directory ‘/pub/pc/win3/demo’.

10

XEmacs User’s Manual

11

Introduction

You are reading about XEmacs, an incarnation of the advanced, self-documenting, cus-
tomizable, extensible real-time display editor Emacs. XEmacs provides many powerful
display and user-interface capabilities not found in other Emacsen and is mostly upwardly
compatible with GNU Emacs from the Free Software Foundation (referred to as FSF Emacs
in this manual). XEmacs also comes standard with a great number of useful packages.

We say that XEmacs is a display editor because normally the text being edited is visible
on the screen and is updated automatically as you type. See Chapter 1 [Frame], page 13.

We call XEmacs a real-time editor because the display is updated very frequently, usually
after each character or pair of characters you type. This minimizes the amount of informa-
tion you must keep in your head as you edit. See Chapter 4 [Basic Editing], page 45.

We call XEmacs advanced because it provides facilities that go beyond simple insertion
and deletion: filling of text; automatic indentation of programs; viewing two or more files
at once; and dealing in terms of characters, words, lines, sentences, paragraphs, and pages,
as well as expressions and comments in several different programming languages. It is much
easier to type one command meaning “go to the end of the paragraph” than to find that
spot with simple cursor keys.

Self-documenting means that at any time you can type a special character, Control-h |
to find out what your options are. You can also use C-h to find out what a command does,
or to find all the commands relevant to a topic. See Chapter 8 [Help], page 65.

Customizable means you can change the definitions of XEmacs commands. For example,
if you use a programming language in which comments start with ‘<**’ and end with
“*x> you can tell the XEmacs comment manipulation commands to use those strings (see
Section 22.6 [Comments|, page 191). Another sort of customization is rearrangement of
the command set. For example, you can set up the four basic cursor motion commands
(up, down, left and right) on keys in a diamond pattern on the keyboard if you prefer. See
Chapter 29 [Customization|, page 281.

Extensible means you can go beyond simple customization and write entirely new com-
mands, programs in the Lisp language to be run by XEmacs’s own Lisp interpreter. XEmacs
is an “on-line extensible” system: it is divided into many functions that call each other.
You can redefine any function in the middle of an editing session and replace any part of
XEmacs without making a separate copy of all of XEmacs. Most of the editing commands
of XEmacs are written in Lisp; the few exceptions could have been written in Lisp but are
written in C for efficiency. Only a programmer can write an extension to XEmacs, but
anybody can use it afterward.

12

XEmacs User’s Manual

Chapter 1: The XEmacs Frame 13

1

The XEmacs Frame

Frame In many environments, such as a tty terminal, an XEmacs frame literally takes

up the whole screen. If you are running XEmacs in a multi-window system
like the X Window System, the XEmacs frame takes up one X window. See
Section 1.12 [XEmacs under X], page 19, for more information.

Window No matter what environment you are running in, XEmacs allows you to look

for

at several buffers at the same time by having several windows be part of the
frame. Often, the whole frame is taken up by just one window, but you can
split the frame into two or more subwindows. If you are running XEmacs under
the X window system, that means you can have several XEmacs windowsinside
the X window that contains the XEmacs frame. You can even have multiple
frames in different X windows, each with their own set of subwindows.

Each XEmacs frame displays a variety of information:

The biggest area usually displays the text you are editing. It may consist of one window
or of two or more windows if you need to look at two buffers a the same time.

Below each text window’s last line is a mode line (see Section 1.3 [Mode Line], page 15),
which describes what is going on in that window. The mode line is in inverse video if
the terminal supports that. If there are several XEmacs windows in one frame, each
window has its own mode line.

At the bottom of each XEmacs frame is the echo areaor minibu er window (see Sec-
tion 1.2 [Echo Areal, page 14). It is used by XEmacs to exchange information with the
user. There is only one echo area per XEmacs frame.

If you are running XEmacs under a graphical windowing system, a menu bar at the
top of the frame makes shortcuts to several of the commands available (see Section 2.4
[Pull-down Menus]|, page 27).

Under a graphical windowing system, a toolbar at the top of the frame, just under the
menu bar if it exists, provides “one-touch” shortcuts to several commands. (Not yet
documented.)

Under a graphical windowing system, a gutter at the top (under the toolbar) and/or
bottom of the frame provides advanced GUI facilities like tab controls for rapid switch-
ing among related windows and progress bars for time-consuming operations like down-
loads across the Internet. Gutters are an experimental feature introduced in XEmacs
version 21.2. (Not yet documented.)

You can subdivide the XEmacs frame into multiple text windows, and use each window
a different file (see Chapter 17 [Windows], page 139). Multiple XEmacs windows are

tiled vertically on the XEmacs frame. The upper XEmacs window is separated from the
lower window by its mode line.

When there are multiple, tiled XEmacs windows on a single XEmacs frame, the XEmacs

window receiving input from the keyboard has the keyboard focusand is called the selected
window. The selected window contains the cursor, which indicates the insertion point. If
you are working in an environment that permits multiple XEmacs frames, and you move
the focus from one XEmacs frame into another, the selected window is the one that was
last selected in that frame.

14 XEmacs User’s Manual

The same text can be displayed simultaneously in several XEmacs windows, which can
be in different XEmacs frames. If you alter the text in an XEmacs buffer by editing it in
one XEmacs window, the changes are visible in all XEmacs windows containing that buffer.

1.1 Point

When XEmacs is running, the cursor shows the location at which editing commands will
take effect. This location is called point. You can use keystrokes or the mouse cursor to
move point through the text and edit the text at different places.

While the cursor appears to point at a character, you should think of point as between
two characters: it points before the character on which the cursor appears. The exception
is at the end of the line, where the cursor appears after the last character of the line. Where
the display is capable, the cursor at the end of the line will appear differently from a cursor
over whitespace at the end of the line. (In an X Windows frame, the end-of-line cursor is
half the width of a within-line cursor.) Sometimes people speak of “the cursor” when they
mean “point,” or speak of commands that move point as “cursor motion” commands.

Each XEmacs frame has only one cursor. When output is in progress, the cursor must
appear where the typing is being done. This does not mean that point is moving. It is only
that XEmacs has no way to show you the location of point except when the terminal is idle.

If you are editing several files in XEmacs, each file has its own point location. A file
that is not being displayed remembers where point is. Point becomes visible at the correct
location when you look at the file again.

When there are multiple text windows, each window has its own point location. The
cursor shows the location of point in the selected window. The visible cursor also shows
you which window is selected. If the same buffer appears in more than one window, point
can be moved in each window independently.

The term ‘point’ comes from the character ‘.’, which was the command in TECO (the
language in which the original Emacs was written) for accessing the value now called ‘point’.

1.2 The Echo Area

The line at the bottom of the frame (below the mode line) is the echo area XEmacs uses
this area to communicate with the user:

e Echoing means printing out the characters that the user types. XEmacs never echoes
single-character commands. Multi-character commands are echoed only if you pause
while typing them: As soon as you pause for more than one second in the middle of
a command, all the characters of the command so far are echoed. This is intended
to prompt you for the rest of the command. Once echoing has started, the rest of
the command is echoed immediately as you type it. This behavior is designed to give
confident users fast response, while giving hesitant users maximum feedback. You can
change this behavior by setting a variable (see Section 12.4 [Display Vars], page 93).

e If you issue a command that cannot be executed, XEmacs may print an error message
in the echo area. Error messages are accompanied by a beep or by flashing the frame.
Any input you have typed ahead is thrown away when an error happens.

e Some commands print informative messages in the echo area. These messages look
similar to error messages, but are not announced with a beep and do not throw away

Chapter 1: The XEmacs Frame 15

input. Sometimes a message tells you what the command has done, when this is
not obvious from looking at the text being edited. Sometimes the sole purpose of
a command is to print a message giving you specific information. For example, the
command C-X = is used to print a message describing the character position of point
in the text and its current column in the window. Commands that take a long time
often display messages ending in ‘...’ while they are working, and add ‘done’ at the
end when they are finished.

e The echo area is also used to display the minibu er , a window that is used for reading
arguments to commands, such as the name of a file to be edited. When the minibuffer
is in use, the echo area displays with a prompt string that usually ends with a colon.
The cursor appears after the prompt. You can always get out of the minibuffer by
typing C-g. See Chapter 6 [Minibuffer|, page 55.

1.3 The Mode Line

Each text window’s last line is a mode line which describes what is going on in that window.
When there is only one text window, the mode line appears right above the echo area. The
mode line is in inverse video if the terminal supports that, starts and ends with dashes, and
contains text like ‘XEmacs: something ’.

If a mode line has something else in place of ‘XEmacs: something’, the window above
it is in a special subsystem such as Dired. The mode line then indicates the status of the
subsystem.

Normally, the mode line has the following appearance:
--ch-XEmacs: buf (major minor)----pos------

This gives information about the buffer being displayed in the window: the buffer’s name,
what major and minor modes are in use, whether the buffer’s text has been changed, and
how far down the buffer you are currently looking.

ch contains two stars (‘**’) if the text in the buffer has been edited (the buffer is “mod-
ified”), or two dashes (‘--") if the buffer has not been edited. Exception: for a read-only
buffer, it is ‘%% .

buf is the name of the window’s chosen bu er . The chosen buffer in the selected window
(the window that the cursor is in) is also XEmacs’s selected buffer, the buffer in which
editing takes place. When we speak of what some command does to “the buffer”, we mean
the currently selected buffer. See Chapter 16 [Buffers], page 135.

pos tells you whether there is additional text above the top of the screen or below the
bottom. If your file is small and it is completely visible on the screen, posis ‘A11’. Otherwise,
pos is ‘Top’ if you are looking at the beginning of the file, ‘Bot’ if you are looking at the
end of the file, or ‘nn%’, where nn is the percentage of the file above the top of the screen.

major is the name of the major mode in effect in the buffer. At any time, each buffer is
in one and only one major mode. The available major modes include Fundamental mode
(the least specialized), Text mode, Lisp mode, and C mode. See Chapter 19 [Major Modes],
page 163, for details on how the modes differ and how you select one.

minor is a list of some of the minor modes that are turned on in the window’s chosen
buffer. For example, ‘Fill’ means that Auto Fill mode is on. Abbrev means that Word
Abbrev mode is on. Ovwrt means that Overwrite mode is on. See Section 29.1 [Minor

16 XEmacs User’s Manual

Modes], page 281, for more information. ‘Narrow’ means that the buffer being displayed
has editing restricted to only a portion of its text. This is not really a minor mode, but
is like one. See Section 28.3 [Narrowing], page 276. Def means that a keyboard macro is
being defined. See Section 29.4 [Keyboard Macros], page 291.

Some buffers display additional information after the minor modes. For example, Rmail
buffers display the current message number and the total number of messages. Compilation
buffers and Shell mode display the status of the subprocess.

If XEmacs is currently inside a recursive editing level, square brackets (‘[...]") appear
around the parentheses that surround the modes. If XEmacs is in one recursive editing level
within another, double square brackets appear, and so on. Since information on recursive
editing applies to XEmacs in general and not to any one buffer, the square brackets appear
in every mode line on the screen or not in any of them. See Section 28.5 [Recursive Edit],
page 277.

XEmacs can optionally display the time and system load in all mode lines. To enable this
feature, type M-x display-time . The information added to the mode line usually appears
after the file name, before the mode names and their parentheses. It looks like this:

hh:mrpm LIl [d]
(Some fields may be missing if your operating system cannot support them.) hh and mm
are the hour and minute, followed always by ‘am’ or ‘pm’. LIl is the average number of

running processes in the whole system recently. d is an approximate index of the ratio of
disk activity to CPU activity for all users.

The word ‘Mail’ appears after the load level if there is mail for you that you have not
read yet.

Customization note: the variable mode-line-inverse-video controls whether the mode
line is displayed in inverse video (assuming the terminal supports it); nil means no inverse
video. The default is t. For X frames, simply set the foreground and background colors
appropriately.

1.4 GUI Components

When executed in a graphical windowing environment such as the X Window System or
Microsoft Windows, XEmacs displays several graphical user interface components such as
scrollbars, menubars, toolbars, and gutters. By default there is a vertical scrollbar at the
right of each frame, and at the top of the frame there is a menubar, a toolbar, and a gutter,
in that order. Gutters can contain any of several widgets, but the default configuration
puts a set of "notebook tabs" which you can use as a shortcut for selecting any of several
related buffers in a given frame. Operating the GUI components is "obvious": click on the
menubar to pull down a menu, on a button in the toolbar to invoke a function, and on a
tab in the gutter to switch buffers.

1.5 The XEmacs Menubar

The XEmacs menubar is intended to be conformant to the usual conventions for menubars,
although conformance is not yet perfect. The menu at the extreme right is the ‘Help’
menu, which should always be available. It provides access to all the XEmacs help facilities
available through C-h, as well as samples of various configuration files like ‘~/.Xresources’

Chapter 1: The XEmacs Frame 17

and ‘“/.emacs’. At the extreme left is the ‘Files’ menu, which provides the usual file
reading, writing, and printing operations, as well as operations like revert buffer from most
recent save. The next menu from the left is the ‘Edit’ menu, which provides the ‘Undo’
operation as well as cutting and pasting, searching, and keyboard macro definition and
execution.

XEmacs provides a very dynamic environment, and the Lisp language makes for highly
flexible applications. The menubar reflects this: many menus (eg, the ‘Buffers’ menu,
see Section 2.4.5 [Buffers Menu|, page 32) contain items determined by the current state
of XEmagcs, and most major modes and many minor modes add items to menus and even
whole menus to the menubar. In fact, some applications like w3.el and VM provide so
many menus that they define a whole new menubar and add a button that allows con-
venient switching between the “XEmacs menubar” and the “application menubar”. Such
applications normally bind themselves to a particular frame, and this switching only takes
place on frames where such an application is active (ie, the current window of the frame is
displaying a buffer in the appropriate major mode).

Other menus which are typically available are the ‘Options’, ‘Tools’, ‘Buffers’, ‘Apps’,
and ‘Mule’ menus. For detailed descriptions of these menus, Section 2.4 [Pull-down Menus],
page 27. (In 21.2 XEmacsen, the ‘Mule’ menu will be moved under ‘Options’.)

1.6 XEmacs Scrollbars

XEmacs scrollbars provide the usual interface. Arrow buttons at either end allow for line
by line scrolling, including autorepeat. Clicking in the scrollbar itself provides scrolling
by windowsfull, depending on which side of the slider is clicked. The slider itself may be
dragged for smooth scrolling.

The position of the slider corresponds to the position of the window in the buffer. In
particular, the length of the slider is proportional to the fraction of the buffer which appears
in the window.

The presence of the scrollbars is under control of the application or may be customized
by the user. By default a vertical scrollbar is present in all windows (except the minibuffer),
and there is no horizontal scrollbar.

1.7 XEmacs Mode Lines

When used in a windowing system, the XEmacs modelines can be dragged vertically. The
effect is to resize the windows above and below the modeline (this includes the minibuffer
window).

Additionally, a modeline can be dragged horizontally, in which case it scrolls its own
text. This behavior is not enabled by default because it could be considered as disturbing
when dragging vertically. When this behavior is enabled, the modeline’s text can be dragged
either in the same direction as the mouse, or in the opposite sense, making the modeline
act as a scrollbar for its own text.

You can select the behavior you want from the ‘Display’ submenu of the ‘Options’
ment.

18 XEmacs User’s Manual

1.8 XEmacs Toolbars

XEmacs has a default toolbar which provides shortcuts for some of the commonly used oper-
ations (such as opening files) and applications (such as the Info manual reader). Operations
which require arguments will pop up dialogs to get them.

The position of the default toolbar can be customized. Also, several toolbars may be
present simultaneously (in different positions). VM, for example, provides an application
toolbar which shortcuts for mail-specific operations like sending, saving, and deleting mes-
sages.

1.9 XEmacs Gutters

Gutters are the most flexible of the GUI components described in this section. In theory,
the other GUI components could be implemented by customizing a gutter, but in practice
the other components were introduced earlier and have their own special implementations.
Gutters tend to be more transient than the other components. Buffer tabs, for example,
change every time the selected buffer in the frame changes. And for progress gauges a gutter
to contain the gauge is typically created on the fly when needed, then destroyed when the
operation whose staus is being displayed is completed.

Buffer tabs, having somewhat complex behavior, deserve a closer look. By default, a
row of buffer tabs is displayed at the top of every frame. (The tabs could be placed in the
bottom gutter, but would be oriented the same way and look rather odd. The horizontal
orientation makes putting them in a side gutter utterly impractical.) The buffer displayed
in the current window of a frame can be changed to a specific buffer by clicking [mouse-1]
on the corresponding tab in the gutter.

Each tab contains the name of its buffer. The tab for the current buffer in each frame
is displayed in raised relief. The list of buffers chosen for display in the buffer tab row is
derived by filtering the buffer list (like the Buffers menu). The list starts out with all
existing buffers, with more recently selected buffers coming earlier in the list.

Then "uninteresting" buffers, like internal XEmacs buffers, the *Message Log#* buffer,
and so on are deleted from the list. Next, the frame’s selected buffer is determined. Buffers
with a different major mode from the selected buffer are removed from the list. Finally, if
the list is too long, the least recently used buffers are deleted from the list. By default up
to 6 most recently used buffers with the same mode are displayed on tabs in the gutter.

This behavior can be altered by customizing buffers-tab-filter-functions. Setting
this variable to nil forces display of all buffers, up to buffers-tab-max-size (also cus-
tomizable). More complex behavior may be available in 3rd party libraries. These, and
some more rarely customized options, are in the buffers-tab Customize group.

1.10 Inhibiting Display of GUI Components

Use of GUI facilities is a personal thing. Almost everyone agrees that drawing via keyboard-
based "turtle graphics" is acceptable to hardly anyone if a mouse is available, but conversely
emulating a keyboard with a screenful of buttons is a painful experience. But between those
extremes the complete novice will require a fair amount of time before toolbars and menus
become dispensable, but many an "Ancien Haquer" sees them as a complete waste of
precious frame space that could be filled with text.

Chapter 1: The XEmacs Frame 19

Display of all of the GUI components created by XEmacs can be inhibited through
the use of Customize. Customize can be accessed through ‘Options | Customize’ in the
menu bar, or via M-x customize. Then navigate through the Customize tree to ‘Emacs |
Environment’. Scrollbar and toolbar visibility is controlled via the ‘Display’ group, options
‘Scrollbars visible’ and ‘Toolbar visible’ respectively. Gutter visibility is controlled
by group ‘Gutter’, option ‘Visible’.

Or they can be controlled directly by M-x customize-variable , by changing the val-
ues of the variables menubar-visible-p, scrollbars-visible-p, toolbar-visible-p, or
gutter-buffers-tab-visible-p respectively. (The strange form of the last variable is
due to the fact that gutters are often used to display transient widgets like progress gauges,
which you probably don’t want to inhibit. It is more likely that you want to inhibit the
default display of the buffers tab widget, which is what that variable controls. This interface
is subject to change depending on developer experience and user feedback.)

Control of frame configuration can controlled automatically according to various param-
eters such as buffer or frame because these are speci ers (undefined) [Specifiers], page (un-
defined). Using these features requires programming in Lisp; Customize is not yet that
sophisticated. Also, components that appear in various positions and orientations can have
display suppressed according to position. C-h a visible-p gives a list of variables which
can be customized. E.g., to control the visibility of specifically the left-side toolbar only,
customize left-toolbar-visible-p.

1.11 Changing the Position, Orientation, and Appearance of
GUI Components

#H### Not documented yet.

1.12 Using XEmacs Under the X Window System

XEmacs can be used with the X Window System and a window manager like MWM or
TWM. In that case, the X window manager opens, closes, and resizes XEmacs frames. You
use the window manager’s mouse gestures to perform the operations. Consult your window
manager guide or reference manual for information on manipulating X windows.

When you are working under X, each X window (that is, each XEmacs frame) has a
menu bar for mouse-controlled operations (see Section 2.4 [Pull-down Menus], page 27).

XEmacs under X is also a multi-frame XEmacs. You can use the New Frame menu
item from the File menu to create a new XEmacs frame in a new X window from the same
process. The different frames will share the same buffer list, but you can look at different
buffers in the different frames.

The function find-file-other-frame is just like find-file, but creates a new frame
to display the buffer in first. This is normally bound to C-x 5 C-f, and is what the Open
File, New Frame menu item does.

The function switch-to-buffer-other-frame is just like switch-to-buffer, but cre-
ates a new frame to display the buffer in first. This is normally bound to C-x 5 b.

You can specify a different default frame size other than the one provided. Use the
variable default-frame-plist, which is a plist of default values for frame creation other
than the first one. These may be set in your init file, like this:

20 XEmacs User’s Manual

(setq default-frame-plist ’(width 80 height 55))
This variable has replaced default-frame-alist, which is considered obsolete.

For values specific to the first XEmacs frame, you must use X resources. The variable
x-frame-defaults takes an alist of default frame creation parameters for X window frames.
These override what is specified in ‘“/.Xresources’ but are overridden by the arguments
to the particular call to x-create-frame.

When you create a new frame, the variable create-frame-hook is called with one ar-
gument, the frame just created.

If you want to close one or more of the X windows you created using New Frame, use
the Delete Frame menu item from the File menu.

If you are working with multiple frames, some special information applies:

e Two variables, frame-title-format and frame-icon-title-format determine the
title of the frame and the title of the icon that results if you shrink the frame.

e The variables auto-lower-frame and auto-raise-frame position a frame. If true,
auto-lower-frame lowers a frame to the bottom when it is no longer selected. If
true, auto-raise-frame raises a frame to the top when it is selected. Under X, most
ICCCM-compliant window managers will have options to do this for you, but these
variables are provided in case you are using a broken window manager.

e There is a new frame/modeline format directive, %S, which expands to the name of the
current frame (a frame’s name is distinct from its title; the name is used for resource
lookup, among other things, and the title is simply what appears above the window.)

1.13 Using XEmacs Under Microsoft Windows
Use of XEmacs under MS Windows is not separately documented here, but most operations
available under the X Window System are also available with MS Windows.

Where possible, native MS Windows GUI components and capabilities are used in
XEmacs.

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 21

2 Keystrokes, Key Sequences, and Key Bindings

This chapter discusses the character set Emacs uses for input commands and inside files.
You have already learned that the more frequently used Emacs commands are bound to
keys. For example, Control-f is bound to forward-char. The following issues are covered:

o How keystrokes can be represented
e How you can create key sequences from keystrokes

e How you can add to the available modifier keys by customizing your keyboard: for
example, you could have the Capslocki key be understood as the fBuperi key by Emacs.
A tBuped key is used like Coniroli or MMetai in that you hold it while typing another key.

You will also learn how to customize existing key bindings and create new ones.

2.1 Keystrokes as Building Blocks of Key Sequences

Earlier versions of Emacs used only the ASCII character set, which defines 128 different
character codes. Some of these codes are assigned graphic symbols like ‘a’ and ‘="; the rest
are control characters, such as Control-a (also called C-a). C-a means you hold down the
RCTRL key and then press a.

Keybindings in XEmacs are not restricted to the set of keystrokes that can be represented
in ASCII. XEmacs can tell the difference between, for example, Control-h , Control-
Shift-h |, and Backspace

A keystroke is like a piano chord: you get it by simultaneously striking several keys.
To be more precise, a keystroke consists of a possibly empty set of modifiers followed by a
single keysym. The set of modifiers is small; it consists of Control , Meta, Super, Hyper,
and Shift .

The rest of the keys on your keyboard, along with the mouse buttons, make up the set
of keysyms. A keysym is usually what is printed on the keys on your keyboard. Here is a
table of some of the symbolic names for keysyms:

a,b,c... alphabetic keys
f1,f2... function keys
buttonl left mouse button
button2 middle mouse button
button3 right mouse button

buttonlup
upstroke on the left mouse button

button2up
upstroke on the middle mouse button

button3up
upstroke on the right mouse button

return Return key

22 XEmacs User’s Manual

Use the variable keyboard-translate-table only if you are on a dumb tty, as it cannot
handle input that cannot be represented as ASCII. The value of this variable is a string
used as a translate table for keyboard input or nil. Each character is looked up in this
string and the contents used instead. If the string is of length n, character codes N and up
are untranslated. If you are running Emacs under X, you should do the translations with
the xmodmap program instead.

2.1.1 Representing Keystrokes

XEmacs represents keystrokes as lists. Each list consists of an arbitrary combination of
modifiers followed by a single keysym at the end of the list. If the keysym corresponds to
an ASCII character, you can use its character code. (A keystroke may also be represented
by an event object, as returned by the read-key-sequence function; non-programmers
need not worry about this.)

The following table gives some examples of how to list representations for keystrokes.
Each list consists of sets of modifiers followed by keysyms:

(control a)
Pressing ICTRL and a simultaneously.

(control ?a)
Another way of writing the keystroke C-a.

(control 65)
Yet another way of writing the keystroke C-a.

(break) Pressing the lBREAKi key.

(control meta button2up)
Release the middle mouse button, while pressing ICTRLI and MMETAI.

Note: As you define keystrokes, you can use the shift key only as a modifier with
characters that do not have a second keysym on the same key, such as backspace and tab .
It is an error to define a keystroke using the hhifti modifier with keysyms such as a and =
The correct forms are Aand +.

2.1.2 Representing Key Sequences

A complete key sequences a sequence of keystrokes that Emacs understands as a unit.
Key sequences are significant because you can bind them to commands. Note that not all
sequences of keystrokes are possible key sequences. In particular, the initial keystrokes in a
key sequence must make up a pre x key sequence

Emacs represents a key sequence as a vector of keystrokes. Thus, the schematic repre-
sentation of a complete key sequence is as follows:

[(modifier .. modifier keysym) ... (modifier .. modifier keysym)]
Here are some examples of complete key sequences:
[(control c) (control a)]
Typing C-c followed by C-a

[(control c) (control 65)]
Typing C-c followed by C-a. (Using the ASCII code for the character ‘a’)

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 23

[(control c) (break)]
Typing C-c followed by the break character.

A pre x key sequenceis the beginning of a series of longer sequences that are valid key
sequences; adding any single keystroke to the end of a prefix results in a valid key sequence.
For example, control-x is standardly defined as a prefix. Thus there is a two-character
key sequence starting with C-x for each valid keystroke, giving numerous possibilities. Here
are some samples:

e [(control x) (c)]
e [(control x) (control c)]

Adding one character to a prefix key does not have to form a complete key. It could make
another, longer prefix. For example, [(control x) (\4)] is itself a prefix that leads to any
number of different three-character keys, including [(control x) (\4) ()] , [(control x)
(\) (b)] and so on. It would be possible to define one of those three-character sequences
as a prefix, creating a series of four-character keys, but we did not define any of them this
way.

By contrast, the two-character sequence [(control f) (control k)] is not a key, be-
cause the (control f) is a complete key sequence in itself. You cannot give [(control
f (control k)] an independent meaning as a command while (control f) is a complete
sequence, because Emacs would understand RC-f C-ki as two commands.

The predefined prefix key sequences in Emacs are (control ¢) , (control x) , (control
h), [(control x) (\4)] , and escape. You can customize Emacs and could make new pre-
fix keys or eliminate the default key sequences. See Section 29.5 [Key Bindings|, page 293.
For example, if you redefine (control f) as a prefix, [(control f) (control k)] auto-
matically becomes a valid key sequence (complete, unless you define it as a prefix as well).
Conversely, if you remove the prefix definition of [(control x) (\4)] , [(control x) (\4)

(0] (or [(control x) (\4) anything]) is no longer a valid key sequence.

Note that the above paragraphs uses \4 instead of simply 4, because \4 is the symbol
whose name is "4", and plain 4 is the integer 4, which would have been interpreted as the
ASCII value. Another way of representing the symbol whose name is "4" is to write 74,
which would be interpreted as the number 52, which is the ASCII code for the character
"4". 'We could therefore actually have written 52 directly, but that is far less clear.

2.1.3 String Key Sequences

For backward compatibility, you may also represent a key sequence using strings. For
example, we have the following equivalent representations:

"\C-c\C-c "
[(control c) (control c)]

"e\C-c " [(meta control c)]

2.1.4 Assignment of the mETa Key

Not all terminals have the complete set of modifiers. Terminals that have a Metai key allow
you to type Meta characters by just holding that key down. To type Meta-a, hold down
MMETAI and press a. On those terminals, the METAI key works like the FHIFTI key. Such a

24 XEmacs User’s Manual

key is not always labeled METAi, however, as this function is often a special option for a
key with some other primary purpose.

If there is no IMETAI key, you can still type Meta characters using two-character sequences
starting with HESCi. To enter M-a you could type IESC a. To enter C-M-a you would type
ESC C-atEsdi is allowed on terminals with Meta keys, too, in case you have formed a habit
of using it.

If you are running under X and do not have a METAiI key, it is possible to reconfigure
some other key to be a METAI key. See Section 2.1.5 [Super and Hyper Keys|, page 24.

Emacs believes the terminal has a WMETAI key if the variable meta-flag is non-nil.
Normally this is set automatically according to the termcap entry for your terminal type.
However, sometimes the termcap entry is wrong, and then it is useful to set this variable
yourself. See Section 29.3 [Variables|, page 282, for how to do this.

Note: If you are running under the X window system, the setting of the meta-flag
variable is irrelevant.

2.1.5 Assignment of the fupErR and hiypEri Keys

Most keyboards do not, by default, have I[FUPERI or FIYPERI modifier keys. Under X, you
can simulate the ISUPERI or FHIYPERI key if you want to bind keys to sequences using super
and hyper. You can use the xmodmap program to do this.

For example, to turn your CAPS-LOCKi key into a ISUPERI key, do the following:
Create a file called ~/.xmodmap. In this file, place the lines

remove Lock = Caps_Lock
keysym Caps_Lock = Super_L
add Mod2 = Super_L
The first line says that the key that is currently called Caps_Lock should no longer behave
as a “lock” key. The second line says that this should now be called Super_L instead. The
third line says that the key called Super_L should be a modifier key, which produces the
Mod2 modifier.

To create a METAI or HEIYPERI key instead of a ISUPERI key, replace the word Super above
with Meta or Hyper.

Just after you start up X, execute the command xmodmap /.xmodmap. You can add this
command to the appropriate initialization file to have the command executed automatically.

If you have problems, see the documentation for the xmodmap program. The X keyboard
model is quite complicated, and explaining it is beyond the scope of this manual. However,
we reprint the following description from the X Protocol document for your convenience:

A list of keysyms is associated with each keycode. If that list (ignoring trailing NoSymbol
entries) is a single keysym ‘K’, then the list is treated as if it were the list ¢ ‘K NoSymbol
K NoSymbol’’. If the list (ignoring trailing NoSymbol entries) is a pair of keysyms ‘K1 K2’,
then the list is treated as if it were the list ‘ ‘K1 K2 K1 K2’’. If the list (ignoring trailing
NoSymbol entries) is a triple of keysyms ‘K1 K2 K3’, then the list is treated as if it were the
list ¢ ‘K1 K2 K3 NoSymbol’’.

The first four elements of the list are split into two groups of keysyms. Group 1 contains
the first and second keysyms; Group 2 contains third and fourth keysyms. Within each
group, if the second element of the group is NoSymbol, then the group should be treated

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 25

as if the second element were the same as the first element, except when the first element
is an alphabetic keysym ‘K’ for which both lowercase and uppercase forms are defined. In
that case, the group should be treated as if the first element were the lowercase form of ‘K’
and the second element were the uppercase form of ‘K’.

The standard rules for obtaining a keysym from a KeyPress event make use of only the
Group 1 and Group 2 keysyms; no interpretation of other keysyms in the list is given here.
(That is, the last four keysyms are unused.)

Which group to use is determined by modifier state. Switching between groups is con-
trolled by the keysym named Mode_switch. Attach that keysym to some keycode and
attach that keycode to any one of the modifiers Modl through Mod5. This modifier is
called the group modi er. For any keycode, Group 1 is used when the group modifier is off,
and Group 2 is used when the group modifier is on.

Within a group, which keysym to use is also determined by modifier state. The first
keysym is used when the Shift and Lock modifiers are off. The second keysym is used
when the Shift modifier is on, or when the Lock modifier is on and the second keysym
is uppercase alphabetic, or when the Lock modifier is on and is interpreted as ShiftLock.
Otherwise, when the Lock modifier is on and is interpreted as CapsLock, the state of the
Shift modifier is applied first to select a keysym, but if that keysym is lower-case alphabetic,
then the corresponding upper-case keysym is used instead.

In addition to the above information on keysyms, we also provide the following descrip-
tion of modifier mapping from the InterClient Communications Conventions Manual:

X11 supports 8 modifier bits, of which 3 are pre-assigned to Shift, Lock, and Control.
Each modifier bit is controlled by the state of a set of keys, and these sets are specified in
a table accessed by GetModifierMapping() and SetModifierMapping().

A client needing to use one of the pre-assigned modifiers should assume that the modifier
table has been set up correctly to control these modifiers. The Lock modifier should be
interpreted as Caps Lock or Shift Lock according to whether the keycodes in its controlling
set include XK_Caps_Lock or XK_Shift_Lock.

Clients should determine the meaning of a modifier bit from the keysyms being used to
control it.

A client needing to use an extra modifier, for example Meta, should:
1. Scan the existing modifier mappings.

1. If it finds a modifier that contains a keycode whose set of keysyms includes XK_
Meta_L or XK_Meta_R, it should use that modifier bit.

2. If there is no existing modifier controlled by XK_Meta_L or XK_Meta_R, it should
select an unused modifier bit (one with an empty controlling set) and:
2. If there is a keycode with XL_Meta_L in its set of keysyms, add that keycode to the set
for the chosen modifier, and then:

1. If there is a keycode with XL_Meta_R in its set of keysyms, add that keycode to
the set for the chosen modifier, and then:

2. If the controlling set is still empty, interact with the user to select one or more
keys to be Meta.

3. If there are no unused modifier bits, ask the user to take corrective action.

26 XEmacs User’s Manual

This means that the Modl modifier does not necessarily mean Meta, although some
applications (such as twm and emacs 18) assume that. Any of the five unassigned modifier
bits could mean Meta; what matters is that a modifier bit is generated by a keycode which
is bound to the keysym Meta_L or Meta_R.

Therefore, if you want to make a IMETAI key, the right way is to make the keycode in
question generate both a Meta keysym and some previously-unassigned modifier bit.

2.2 Representation of Characters

This section briefly discusses how characters are represented in Emacs buffers. See Sec-
tion 2.1.2 [Key Sequences], page 22, for information on representing key sequences to create
key bindings.

ASCII graphic characters in Emacs buffers are displayed with their graphics. HLFDi is
the same as a newline character; it is displayed by starting a new line. MTABi is displayed
by moving to the next tab stop column (usually every 8 spaces). Other control characters
are displayed as a caret (‘') followed by the non-control version of the character; thus,
C-a is displayed as ‘~A’. Non-ASCII characters 128 and up are displayed with octal escape
sequences; thus, character code 243 (octal), also called M-#when used as an input character,
is displayed as ‘\243’.

The variable ctl-arrow may be used to alter this behavior. See Section 12.4 [Display
Vars|, page 93.

2.3 Keys and Commands

This manual is full of passages that tell you what particular keys do. But Emacs does not
assign meanings to keys directly. Instead, Emacs assigns meanings to functions, and then
gives keys their meanings by binding them to functions.

A function is a Lisp object that can be executed as a program. Usually it is a Lisp
symbol that has been given a function definition; every symbol has a name, usually made
of a few English words separated by dashes, such as next-line or forward-word. It also
has a de nition , which is a Lisp program. Only some functions can be the bindings of
keys; these are functions whose definitions use interactive to specify how to call them
interactively. Such functions are called commands and their names are command names
More information on this subject will appear in the XEmacs Lisp Reference Manual.

The bindings between keys and functions are recorded in various tables called keymaps
See Section 29.5 [Key Bindings|, page 293, for more information on key sequences you can
bind commands to. See Section 29.5.1 [Keymaps], page 293, for information on creating
keymaps.

When we say “C-n moves down vertically one line” we are glossing over a distinction
that is irrelevant in ordinary use but is vital in understanding how to customize Emacs.
The function next-1ine is programmed to move down vertically. C-n has this effect because
it is bound to that function. If you rebind C-n to the function forward-word then C-n will
move forward by words instead. Rebinding keys is a common method of customization.

The rest of this manual usually ignores this subtlety to keep things simple. To give the
customizer the information needed, we often state the name of the command that really
does the work in parentheses after mentioning the key that runs it. For example, we will say

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 27

that “The command C-n (next-1line) moves point vertically down,” meaning that next-
line is a command that moves vertically down and C-n is a key that is standardly bound
to it.

While we are on the subject of information for customization only, it’s a good time to
tell you about variables. Often the description of a command will say, “To change this, set
the variable mumble-foo.” A variable is a name used to remember a value. Most of the
variables documented in this manual exist just to facilitate customization: some command
or other part of Emacs uses the variable and behaves differently depending on its setting.
Until you are interested in customizing, you can ignore the information about variables.
When you are ready to be interested, read the basic information on variables, and then the
information on individual variables will make sense. See Section 29.3 [Variables|, page 282.

2.4 XEmacs Pull-down Menus

If you are running XEmacs under X, a menu bar on top of the Emacs frame provides
access to pull-down menus of file, edit, and help-related commands. The menus provide
convenient shortcuts and an easy interface for novice users. They do not provide additions
to the functionality available via key commands; you can still invoke commands from the
keyboard as in previous versions of Emacs.

File Perform file and buffer-related operations, such as opening and closing files,
saving and printing buffers, as well as exiting Emacs.

Edit Perform standard editing operations, such as cutting, copying, pasting, and
killing selected text.

Apps Access to sub-applications implemented within XEmacs, such as the mail
reader, the World Wide Web browser, the spell-checker, and the calendar
program.

Options Control various options regarding the way XEmacs works, such as controlling
which elements of the frame are visible, selecting the fonts to be used for text,
specifying whether searches are case-sensitive, etc.

Bu ers Present a menu of buffers for selection as well as the option to display a buffer
list.
Tools Perform various actions designed to automate software development and similar

technical work, such as searching through many files, compiling a program, and
comparing or merging two or three files.

Help Access to Emacs Info.

There are two ways of selecting an item from a pull-down menu:

e Select an item in the menu bar by moving the cursor over it and click the left mouse-
button. Then move the cursor over the menu item you want to choose and click left
again.

e Select an item in the menu bar by moving the cursor over it and click and hold the left
mouse-button. With the mouse-button depressed, move the cursor over the menu item
you want, then release it to make your selection.

28 XEmacs User’s Manual

If a command in the pull-down menu is not applicable in a given situation, the command
is disabled and its name appears faded. You cannot invoke items that are faded. For
example, many commands on the Edit menu appear faded until you select text on which
they are to operate; after you select a block of text, edit commands are enabled. See
Section 9.2 [Mouse Selection], page 73, for information on using the mouse to select text.
See Section 10.3 [Using X Selections], page 81, for related information.

There are also M-X equivalents for each menu item. To find the equivalent for any
left-button menu item, do the following:

1. Type C-h k to get the Describe Key prompt.

2. Select the menu item and click.

Emacs displays the function associated with the menu item in a separate window, usually
together with some documentation.

2.4.1 The File Menu

The File menu bar item contains the items New Frame, Open File..., Save Bu er, Save
Buer As... , Revert Bu er , Print Bu er , Delete Frame, Kill Bu er and Exit Emacs on the
pull-down menu. If you select a menu item, Emacs executes the equivalent command.

Open File, New Frame...
Prompts you for a filename and loads that file into a new buffer in a new Emacs
frame, that is, a new X window running under the same Emacs process. You
can remove the frame using the Delete Frame menu item. When you remove
the last frame, you exit Emacs and are prompted for confirmation.

Open File...
Prompts you for a filename and loads that file into a new buffer. Open File...
is equivalent to the Emacs command find-file (C-x C-f).

Insert File...
Prompts you for a filename and inserts the contents of that file into the cur-
rent buffer. The file associated with the current buffer is not changed by this
command. This is equivalent to the Emacs command insert-file (C-xi).

Save Bu er
Writes and saves the current Emacs buffer as the latest version of the current
visited file. Save Bu er is equivalent to the Emacs command save-buffer (C-X
C-s).

Save Buer As...
Writes and saves the current Emacs buffer to the filename you specify. Save
Buer As... is equivalent to the Emacs command write-file (C-x C-w).

Revert Bu er
Restores the last saved version of the file to the current buffer. When you edit
a buffer containing a text file, you must save the buffer before your changes
become effective. Use Revert Bu er if you do not want to keep the changes
you have made in the buffer. Revert Bu er is equivalent to the Emacs command
revert-file (M-x revert-buffer).

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 29

Kill Bu er
Kills the current buffer, prompting you first if there are unsaved changes. This
is roughly equivalent to the Emacs command kill-buffer (C-X K), except that
kill-buffer prompts for the name of a buffer to kill.

Print Bu er
Prints a hardcopy of the current buffer. Equivalent to the Emacs command
print-buffer (M-x print-buffer).

New Frame
Creates a new Emacs frame displaying the *scratch* buffer. This is like the
Open File, New Frame... menu item, except that it does not prompt for or load
a file.

Delete Frame
Allows you to close all but one of the frames created by New Frame. If you
created several Emacs frames belonging to the same Emacs process, you can
close all but one of them. When you attempt to close the last frame, Emacs
informs you that you are attempting to delete the last frame. You have to
choose Exit Emacs for that.

Split Frame
Divides the current window on the current frame into two equal-sized windows,
both displaying the same buffer. Equivalent to the Emacs command split-
window-vertically (C-x 2).

Un-split (Keep This)
If the frame is divided into multiple windows, this removes all windows other
than the selected one. Equivalent to the Emacs command delete-other-
windows (C-x 1).

Un-split (Keep Others)
If the frame is divided into multiple windows, this removes the selected window
from the frame, giving the space back to one of the other windows. Equivalent
to the Emacs command delete-window (C-x 0).

Exit Emacs
Shuts down (kills) the Emacs process. Equivalent to the Emacs command save-
buffers-kill-emacs (C-x C-c). Before killing the Emacs process, the system
asks which unsaved buffers to save by going through the list of all buffers in
that Emacs process.

2.4.2 The Edit Menu

The Edit pull-down menu contains the Undo, Cut, Copy, Paste, and Clear menu items.
When you select a menu item, Emacs executes the equivalent command. Most commands
on the Edit menu work on a block of text, the X selection. They appear faded until you select
a block of text (activate a region) with the mouse. See Section 10.3 [Using X Selections],
page 81, see Section 10.1 [Killing], page 77, and see Section 10.2 [Yanking], page 79 for more
information.

Undo Undoes the previous command. Undo is equivalent to the Emacs command
undo (C-x u).

30 XEmacs User’s Manual

Cut Removes the selected text block from the current buffer, makes it the X clip-
board selection, and places it in the kill ring. Before executing this command,
you have to select a region using Emacs region selection commands or with the
mouse.

Copy Makes a selected text block the X clipboard selection, and places it in the kill
ring. You can select text using one of the Emacs region selection commands or
by selecting a text region with the mouse.

Paste Inserts the current value of the X clipboard selection in the current buffer. Note
that this is not necessarily the same as the Emacs yank command, because the
Emacs kill ring and the X clipboard selection are not the same thing. You
can paste in text you have placed in the clipboard using Copy or Cut. You
can also use Paste to insert text that was pasted into the clipboard from other
applications.

Clear Removes the selected text block from the current buffer but does not place it
in the kill ring or the X clipboard selection.

Start Macro Recording
After selecting this, Emacs will remember every keystroke you type until End
Macro Recording is selected. This is the same as the Emacs command start-
kbd-macro (C-x ().

End Macro Recording
Selecting this tells emacs to stop remembering your keystrokes. This is the
same as the Emacs command end-kbd-macro (C-x)).

Execute Last Macro
Selecting this item will cause emacs to re-interpret all of the keystrokes which
were saved between selections of the Start Macro Recording and End Macro
Recording menu items. This is the same as the Emacs command call-last-
kbd-macro (C-x e).

2.4.3 The Apps Menu

The Apps pull-down menu contains the Read Mail (VM)... , Read Mail (MH)... , Send Mail...,
Usenet News Browse the Web, Gopher, Spell-Check Bu er and Emulate VI menu items,
and the Calendar and Gamessub-menus. When you select a menu item, Emacs executes
the equivalent command. For some of the menu items, there are sub-menus which you will
need to select.

2.4.4 The Options Menu

The Options pull-down menu contains the Read Only, Case Sensitive SearchOverstrike,
Auto Delete Selection, Teach Extended Commands Syntax Highlighting , Paren Highlight-
ing, Font, Size Weight, Bu ers Menu Length... , Bu ers Sub-Menus and Save Optionsmenu
items. When you select a menu item, Emacs executes the equivalent command. For some
of the menu items, there are sub-menus which you will need to select.

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 31

Read Only
Selecting this item will cause the buffer to visit the file in a read-only mode.
Changes to the file will not be allowed. This is equivalent to the Emacs com-
mand toggle-read-only (C-x C-q).

Case Sensitive Search
Selecting this item will cause searches to be case-sensitive. If its not selected
then searches will ignore case. This option is local to the buffer.

Overstrike After selecting this item, when you type letters they will replace existing text
on a one-to-one basis, rather than pushing it to the right. At the end of a line,
such characters extend the line. Before a tab, such characters insert until the
tab is filled in. This is the same as Emacs command quoted-insert (C-q).

Auto Delete Selection
Selecting this item will cause automatic deletion of the selected region. The
typed text will replace the selection if the selection is active (i.e. if its high-
lighted). If the option is not selected then the typed text is just inserted at the
point.

Teach Extended Commands
After you select this item, any time you execute a command with M-xwhich
has a shorter keybinding, you will be shown the alternate binding before the
command executes.

Syntax Highlighting

You can customize your init file to include the font-lock mode so that when you
select this item, the comments will be displayed in one face, strings in another,
reserved words in another, and so on. See Section 29.7 [Init File], page 300.
When Fonts is selected, different parts of the program will appear in different
Fonts. When Colors is selected, then the program will be displayed in different
colors. Selecting None causes the program to appear in just one Font and Color.
Selecting Lessresets the Fonts and Colors to a fast, minimal set of decorations.
Selecting More resets the Fonts and Colors to a larger set of decorations. For
example, if Lessis selected (which is the default setting) then you might have
all comments in green color. Whereas, if More is selected then a function name
in the comments themselves might appear in a different Color or Font.

Paren Highlighting
After selecting Blink from this item, if you place the cursor on a parenthesis,
the matching parenthesis will blink. If you select Highlight and place the cur-
sor on a parenthesis, the whole expression of the parenthesis under the cursor
will be highlighted. Selecting None will turn off the options (regarding Paren
Highlighting) which you had selected earlier.

Font You can select any Font for your program by choosing from one of the available
Fonts.
Size You can select any size ranging from 2 to 24 by selecting the appropriate option.

Weight You can choose either Bold or Medium for the weight.

32 XEmacs User’s Manual

Bu ers Menu Length...
Prompts you for the number of buffers to display. Then it will display that
number of most recently selected buffers.

Bu ers Sub-Menus
After selection of this item the Buffers menu will contain several commands,
as submenus of each buffer line. If this item is unselected, then there are no
submenus for each buffer line, the only command available will be selecting that
buffer.

Save Options
Selecting this item will save the current settings of your Options menu to your
init file. See Section 29.7 [Init File], page 300.

2.4.5 The Buers Menu

The Bu ers menu provides a selection of up to ten buffers and the item List All Bu ers
which provides a Buffer List. See Section 16.2 [List Buffers], page 136, for more information.

2.4.6 The Tools Menu

The Tools pull-down menu contains the Grep..., Compile..., Shell Command.., Shell Com-
mand on Region.., Debug(GDB)... and Debug(DBX)... menu items, and the Compare,
Merge, Apply Patch and Tags sub-menus. When you select a menu item, Emacs executes
the equivalent command. For some of the menu items, there are sub-menus which you will
need to select.

2.4.7 The Help Menu

The Help Menu gives you access to Emacs Info and provides a menu equivalent for each of
the choices you have when using C-h. See Chapter 8 [Help], page 65, for more information.

The Help menu also gives access to UNIX online manual pages via the UNIX Manual
Page option.

2.4.8 Customizing XEmacs Menus

You can customize any of the pull-down menus by adding or removing menu items and
disabling or enabling existing menu items.

The following functions are available:

add-menu: (menu-path menu-name menu-items &optional before)
Add a menu to the menu bar or one of its submenus.

add-menu-item: (menu-path item-name function
enabled-p &optional before) Add a menu item to a menu, creating the menu
first if necessary.

delete-menu-item: (path)
Remove the menu item defined by path from the menu hierarchy.

disable-menu-item: (path)
Disable the specified menu item.

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 33

enable-menu-item: (path)
Enable the specified previously disabled menu item.

relabel-menu-item: (path new-name)
Change the string of the menu item specified by path to new-name

Use the function add-menu to add a new menu or submenu. If a menu or submenu of
the given name exists already, it is changed.

menu-path identifies the menu under which the new menu should be inserted. It is a list
of strings; for example, ("File") names the top-level File menu. ("File" "Foo") names
a hypothetical submenu of File. Tf menu-path is nil, the menu is added to the menu bar
itself.

menu-nameis the string naming the menu to be added.

menu-items is a list of menu item descriptions. Each menu item should be a vector of
three elements:

e A string, which is the name of the menu item
e A symbol naming a command, or a form to evaluate
e t ornil to indicate whether the item is selectable
The optional argument before is the name of the menu before which the new menu or
submenu should be added. If the menu is already present, it is not moved.

The function add-menu-item adds a menu item to the specified menu, creating the menu
first if necessary. If the named item already exists, the menu remains unchanged.

menu-path identifies the menu into which the new menu item should be inserted. It is
a list of strings; for example, ("File") names the top-level File menu. ("File" "Foo")
names a hypothetical submenu of File.

item-name is the string naming the menu item to add.

function is the command to invoke when this menu item is selected. If it is a symbol,
it is invoked with call-interactively, in the same way that functions bound to keys are
invoked. If it is a list, the list is simply evaluated.

enabled-p controls whether the item is selectable or not. It should be t, nil, or a form
to evaluate to decide. This form will be evaluated just before the menu is displayed, and
the menu item will be selectable if that form returns non-nil.

For example, to make the rename-file command available from the File menu, use the
following code:

(add-menu-item ’("File") "Rename File" ’rename-file t)

To add a submenu of file management commands using a File Management item, use
the following code:

(add-menu-item ’("File" "File Management") "Copy File" ’copy-file t)
(add-menu-item ’("File" "File Management") "Delete File" ’delete-file t)
(add-menu-item ’("File" "File Management") "Rename File" ’rename-file t)

The optional before argument is the name of a menu item before which the new item
should be added. If the item is already present, it is not moved.

To remove a specified menu item from the menu hierarchy, use delete-menu-item.

34 XEmacs User’s Manual

path is a list of strings that identify the position of the menu item in the menu hierarchy.
("File" "Save") means the menu item called Saveunder the top level File menu. ("Menu"
"Foo" "Item") means the menu item called Item under the Foo submenu of Menu.

To disable a menu item, use disable-menu-item. The disabled menu item is grayed
and can no longer be selected. To make the item selectable again, use enable-menu-item.
disable-menu-item and enable-menu-item both have the argument path.

To change the string of the specified menu item, use relabel-menu-item. This function
also takes the argument path.

new-nameis the string to which the menu item will be changed.

Chapter 3: Entering and Exiting Emacs 35

3 Entering and Exiting Emacs

The usual way to invoke XEmacs is to type xemacstRETi at the shell. XEmacs clears the
screen and then displays an initial advisory message and copyright notice. You can begin
typing XEmacs commands immediately afterward.

Some operating systems insist on discarding all type-ahead when XEmacs starts up; they
give XEmacs no way to prevent this. Therefore, it is advisable to wait until XEmacs clears
the screen before typing your first editing command.

If you run XEmacs from a shell window under the X Window System, run it in the
background with ‘xemacs&’. This way, XEmacs does not tie up the shell window, so you
can use that to run other shell commands while XEmacs operates its own X windows. You
can begin typing XEmacs commands as soon as you direct your keyboard input to the
XEmacs frame.

Before Emacs reads the first command, you have not had a chance to give a command to
specify a file to edit. Since Emacs must always have a current buffer for editing, it presents
a buffer, by default, a buffer named ‘*scratch*’. The buffer is in Lisp Interaction mode;
you can use it to type Lisp expressions and evaluate them, or you can ignore that capability
and simply doodle. (You can specify a different major mode for this buffer by setting the
variable initial-major-mode in your init file. See Section 29.7 [Init File], page 300.)

It is possible to specify files to be visited, Lisp files to be loaded, and functions to be
called, by giving Emacs arguments in the shell command line. See Section 3.2 [Command
Switches], page 37. But we don’t recommend doing this. The feature exists mainly for
compatibility with other editors.

Many other editors are designed to be started afresh each time you want to edit. You
edit one file and then exit the editor. The next time you want to edit either another file or
the same one, you must run the editor again. With these editors, it makes sense to use a
command-line argument to say which file to edit.

But starting a new Emacs each time you want to edit a different file does not make
sense. For one thing, this would be annoyingly slow. For another, this would fail to take
advantage of Emacs’s ability to visit more than one file in a single editing session. And it
would lose the other accumulated context, such as registers, undo history, and the mark
ring.

The recommended way to use XEmacs is to start it only once, just after you log in,
and do all your editing in the same Emacs session. Each time you want to edit a different
file, you visit it with the existing Emacs, which eventually comes to have many files in it
ready for editing. Usually you do not kill the Emacs until you are about to log out. See
Chapter 15 [Files|, page 113, for more information on visiting more than one file.

3.1 Exiting Emacs

There are two commands for exiting Emacs because there are two kinds of exiting: sus-
pending Emacs and killing Emacs.

Suspendingmeans stopping Emacs temporarily and returning control to its parent pro-
cess (usually a shell), allowing you to resume editing later in the same Emacs job, with the
same buffers, same kill ring, same undo history, and so on. This is the usual way to exit.

36 XEmacs User’s Manual

Kiling Emacs means destroying the Emacs job. You can run Emacs again later, but
you will get a fresh Emacs; there is no way to resume the same editing session after it has
been killed.

C-z Suspend Emacs or iconify a frame (suspend-emacs-or-iconify-frame). If
used under the X window system, shrink the X window containing the Emacs
frame to an icon (see below).

C-x C-c Kill Emacs (save-buffers-kill-emacs).

If you use XEmacs under the X window system, C-z shrinks the X window containing
the Emacs frame to an icon. The Emacs process is stopped temporarily, and control is
returned to the window manager. If more than one frame is associated with the Emacs
process, only the frame from which you used C-z is iconified.

To activate the "suspended" Emacs, use the appropriate window manager mouse ges-
tures. Usually left-clicking on the icon reactivates and reopens the X window containing
the Emacs frame, but the window manager you use determines what exactly happens. To
actually kill the Emacs process, use C-x C-c or the Exit XEmacs item on the File menu.

To suspend Emacs, type C-z (suspend-emacs). This takes you back to the shell from
which you invoked Emacs. You can resume Emacs with the shell command ‘/xemacs’ in
most common shells.

On systems that do not support suspending programs, C-z starts an inferior shell that
communicates directly with the terminal. Emacs waits until you exit the subshell. (The
way to do that is probably with C-d or ‘exit’, but it depends on which shell you use.) The
only way on these systems to get back to the shell from which Emacs was run (to log out,
for example) is to kill Emacs.

Suspending also fails if you run Emacs under a shell that doesn’t support suspending
programs, even if the system itself does support it. In such a case, you can set the variable
cannot-suspend to a non-nil value to force C-z to start an inferior shell. (One might also
describe Emacs’s parent shell as “inferior” for failing to support job control properly, but
that is a matter of taste.)

When Emacs communicates directly with an X server and creates its own dedicated
X windows, C-z has a different meaning. Suspending an applications that uses its own
X windows is not meaningful or useful. Instead, C-z runs the command iconify-or-
deiconify-frame, which temporarily closes up the selected Emacs frame. The way to get
back to a shell window is with the window manager.

To kill Emacs, type C-x C-C (save-buffers-kill-emacs). A two-character key is used
for this to make it harder to type. Selecting the Exit XEmacs option of the File menu is an
alternate way of issuing the command.

Unless a numeric argument is used, this command first offers to save any modified file-
visiting buffers. If you do not save all buffers, you are asked for reconfirmation with yes
before killing Emacs, since any changes not saved will be lost forever. If any subprocesses
are still running, C-x C-c asks you to confirm killing them, since killing Emacs will kill the
subprocesses immediately.

There is no way to restart an Emacs session once you have killed it. You can, however,
arrange for Emacs to record certain session information, such as which files are visited,

Chapter 3: Entering and Exiting Emacs 37

when you kill it, so that the next time you restart Emacs it will try to visit the same files
and so on.

The operating system usually listens for certain special characters whose meaning is to
kill or suspend the program you are running. This operating system feature is turned o
while you are in Emacs. The meanings of C-z and C-x C-C as keys in Emacs were inspired
by the use of C-z and C-C on several operating systems as the characters for stopping or
killing a program, but that is their only relationship with the operating system. You can
customize these keys to run any commands of your choice (see Section 29.5.1 [Keymaps],
page 293).

3.2 Command Line Switches and Arguments

XEmacs supports command line arguments you can use to request various actions when
invoking Emacs. The commands are for compatibility with other editors and for sophisti-
cated activities. If you are using XEmacs under the X window system, you can also use a
number of standard Xt command line arguments. Command line arguments are not usually
needed for editing with Emacs; new users can skip this section.

Many editors are designed to be started afresh each time you want to edit. You start the
editor to edit one file; then exit the editor. The next time you want to edit either another
file or the same one, you start the editor again. Under these circumstances, it makes sense
to use a command line argument to say which file to edit.

The recommended way to use XEmagcs is to start it only once, just after you log in, and
do all your editing in the same Emacs process. Each time you want to edit a file, you visit
it using the existing Emacs. Emacs creates a new buffer for each file, and (unless you kill
some of the buffers) Emacs eventually has many files in it ready for editing. Usually you
do not kill the Emacs process until you are about to log out. Since you usually read files
by typing commands to Emacs, command line arguments for specifying a file when Emacs
is started are seldom needed.

Emacs accepts command-line arguments that specify files to visit, functions to call, and
other activities and operating modes. If you are running XEmacs under the X window
system, a number of standard Xt command line arguments are available, as well as a few
X parameters that are XEmacs-specific.

Options with long names with a single initial hyphen are also recognized with the GNU
double initial hyphen syntax. (The reverse is not true.)

The following subsections list:
e Command line arguments that you can always use
e Command line arguments that have to appear at the beginning of the argument list
e Command line arguments that are only relevant if you are running XEmacs under X

3.2.1 Command Line Arguments for Any Position

Command line arguments are processed in the order they appear on the command line;
however, certain arguments (the ones in the second table) must be at the front of the list if
they are used.

Here are the arguments allowed:

‘file ’ Visit le using find-file. See Section 15.2 [Visiting], page 114.

38 XEmacs User’s Manual

‘“+linenum file ~’
Visit le using find-file, then go to line number linenum in it.

‘-load file ~’
‘-1 file ’ Load a file le of Lisp code with the function load. See Section 23.3 [Lisp
Libraries|, page 211.

‘~funcall function ’
‘~f function ’
Call Lisp function function with no arguments.

‘-eval function ’
Interpret the next argument as a Lisp expression, and evaluate it. You must be
very careful of the shell quoting here.

?

‘~insert file
‘-i file 7 Insert the contents of le into the current buffer. This is like what M-x insert-
buffer does; See Section 15.10 [Misc File Ops], page 134.

‘-kill’ Exit from Emacs without asking for confirmation. Always the last argument
processed, no matter where it appears in the command line.

‘~version’
=V’ Prints version information. This implies ‘-batch’.

% xemacs -version

XEmacs 19.13 of Mon Aug 21 1995 on willow (usg-unix-v) [formerly Lucid Emacs
‘~help’ Prints a summary of command-line options and then exits.

3.2.2 Command Line Arguments (Beginning of Line Only)

The following arguments are recognized only at the beginning of the command line. If more
than one of them appears, they must appear in the order in which they appear in this table.

‘~—show-dump-id’
‘~sd’ Print the ID for the new portable dumper’s dump file on the terminal and exit.
(Prints an error message and exits if XEmacs was not configured ‘--pdump’.)

‘-—no-dump-file’
‘-nd’ Don’t load the dump file. Roughly equivalent to old temacs. (Ignored if XEmacs
was not configured ‘--pdump’.)

‘~—terminal file °’

‘-t file * Use le instead of the terminal for input and output. This implies the
option, documented below.

L_nW7

‘~batch’ Run Emacs in batch mode, which means that the text being edited is not
displayed and the standard Unix interrupt characters such as C-z and C-c
continue to have their normal effect. Emacs in batch mode outputs to stderr
only what would normally be printed in the echo area under program control.

Batch mode is used for running programs written in Emacs Lisp from shell
scripts, makefiles, and so on. Normally the ‘-1’ switch or ‘-f’ switch will be
used as well, to invoke a Lisp program to do the batch processing.

Chapter 3: Entering and Exiting Emacs 39

‘~batch’ implies ‘-q’ (do not load an init file). Tt also causes Emacs to kill itself
after all command switches have been processed. In addition, auto-saving is
not done except in buffers for which it has been explicitly requested.

‘-—no-windows’

‘-nw’ Start up XEmacs in TTY mode (using the TTY XEmacs was started from),
rather than trying to connect to an X display. Note that this happens auto-
matically if the ‘DISPLAY’ environment variable is not set.

‘-debug-init’

Enter the debugger if an error in the init file occurs.

‘~debug-paths’
Displays information on how XEmacs constructs the various paths into its hi-
erarchy on startup. (See also see Section 3.3 [Startup Paths|, page 41.)

‘~unmapped’
Do not map the initial frame. This is useful if you want to start up XEmacs as
a server (e.g. for gnuserv screens or external client widgets).

‘-no-init-file’
‘)

-q Do not load your Emacs init file. See Section 29.7 [Init File], page 300.

‘-no-site-file’
Do not load the site-specific init file ‘1lisp/site-start.el’.

‘-no-autoloads’
Do not load global symbol files (‘auto-autoloads’) at startup. This implies
‘~vanilla’.

‘-no-early-packages’
Do not process early packages. (For more information on startup issues con-
cerning the package system, See Section 3.3 [Startup Paths|, page 41.)

‘~-vanilla’
This is equivalent to ‘-q -no-site-file -no-early-packages’.

‘~user-init-file file ’

Load le as your Emacs init file instead of ‘~/.xemacs/init.el’/”/.emacs’.

9

‘-user-init-directory directory
Use directory as the location of your early package hierarchies and the various
user-specific initialization files.

‘-user user’

‘u user’ Equivalent to ‘-user-init-file “user /.xemacs/init.el -user-init-directoryfl
“user /.xemacs’, or ‘~user-init-file “user /.emacs -user-init-directorylj
~user /.xemacs’, whichever init file comes first. See Section 29.7 [Init File],
page 300.

Note that the init file can get access to the command line argument values as the elements
of a list in the variable command-line-args. (The arguments in the second table above
will already have been processed and will not be in the list.) The init file can override the
normal processing of the other arguments by setting this variable.

One way to use command switches is to visit many files automatically:

40 XEmacs User’s Manual

Xemacs *.cC

passes each .c file as a separate argument to Emacs, so that Emacs visits each file (see
Section 15.2 [Visiting], page 114).

Here is an advanced example that assumes you have a Lisp program file called
‘hack-c-program.el’ which, when loaded, performs some useful operation on the current
buffer, expected to be a C program.

xemacs -batch foo.c -1 hack-c-program -f save-buffer -kill > log

Here Emacs is told to visit ‘foo.c’, load ‘hack-c-program.el’ (which makes changes in
the visited file), save ‘foo.c’ (note that save-buffer is the function that C-x C-s is bound
to), and then exit to the shell from which the command was executed. ‘-batch’ guarantees
there will be no problem redirecting output to ‘log’, because Emacs will not assume that
it has a display terminal to work with.

3.2.3 Command Line Arguments (for XEmacs Under X)

If you are running XEmacs under X, a number of options are available to control color,
border, and window title and icon name:

‘~title title ~’

‘—wn title ’

‘=T title ~’
Use title as the window title. This sets the frame-title-format variable,
which controls the title of the X window corresponding to the selected frame.
This is the same format as mode-line-format.

‘~iconname title ’

‘~in title
Use title as the icon name. This sets the frame-icon-title-format variable,
which controls the title of the icon corresponding to the selected frame.

‘-mc color ’
Use color as the mouse color.

‘~cr color ’
Use color as the text-cursor foreground color.

‘-private’
Install a private colormap for XEmacs.

In addition, XEmagcs allows you to use a number of standard Xt command line arguments.

‘~background color ’
‘~bg color ’
Use color as the background color.

‘~bordercolor color ’
‘~bd color ’
Use color as the border color.

‘~borderwidth width ’
‘~bw width ’
Use width as the border width.

Chapter 3: Entering and Exiting Emacs 41

‘~display display ’

‘-qd display ’
When running under the X window system, create the window containing the
Emacs frame on the display named display.

9

‘~foreground color
‘~fg color ’
Use color as the foreground color.

‘~font nameée
‘~fn nameé
Use name as the default font.

‘-geometry Spec’
‘-geom spec’
‘~g spec’ Use the geometry (window size and/or position) specified by spec

‘~iconic’ Start up iconified.

‘-rv’ Bring up Emacs in reverse video.

‘-name name
Use the resource manager resources specified by name The default is to use
the name of the program (argv[0]) as the resource manager name.

‘—xrm’ Read something into the resource database for this invocation of Emacs only.

3.3 How XEmacs finds Directories and Files

XEmacs deals with a multitude of files during operation. These files are spread over many
directories, and XEmacs determines the location of most of these directories at startup and
organizes them into various paths. (A path, for the purposes of this section, is simply a list
of directories which XEmacs searches successively in order to locate a file.)

3.3.1 XEmacs Directory Hierarchies

Many of the files XEmacs looks for are located within the XEmacs installation itself.
However, there are several views of what actually constitutes the "XEmacs installation":
XEmacs may be run from the compilation directory, it may be installed into arbitrary
directories, spread over several directories unrelated to each other. Moreover, it may sub-
sequently be moved to a different place. (This last case is not as uncommon as it sounds.
Binary kits work this way.) Consequently, XEmacs has quite complex procedures in place
to find directories, no matter where they may be hidden.

XEmacs will always respect directory options passed to configure. However, if it cannot
locate a directory at the configured place, it will initiate a search for the directory in any
of a number of hierarchies rooted under a directory which XEmacs assumes contain parts
of the XEmagcs installation; it may locate several such hierarchies and search across them.
(Typically, there are just one or two hierarchies: the hierarchy where XEmacs was or will
be installed, and the one where it is being built.) Such a directory containing a hierarchy
is called a root. Whenever this section refers to a directory using the shorthand <root>, it
means that XEmacs searches for it under all hierarchies XEmacs was able to scrounge up.
In a running XEmacs, the hierarchy roots are stored in the variable emacs-roots.

42 XEmacs User’s Manual

3.3.2 Package Hierarchies

Many relevant directories and files XEmacs uses are actually not part of the core installa-
tion. They are part of any of the many packages usually installed on top of an XEmacs
installation. (See Section 23.8 [Packages|, page 217.) Hence, they play a prominent role in
the various paths XEmacs sets up.

XEmacs locates packages in any of a number of package hierarchies. Package hierarchies
fall into three groups: early, late, and last, according to the relative location at which they
show up in the various XEmacs paths. Early package hierarchies are at the very front, late
ones somewhere in the middle, and last hierarchies are (you guessed it) last.

By default, XEmacs expects an early package hierarchy in the subdirectory
‘.xemacs/xemacs-packages’ of the user’s home directory.

Moreover, XEmacs expects late hierarchies in the subdirectories ‘site-packages’,
‘mule-packages’, and ‘xemacs-packages’ (in that order) of the ‘<root>/lib/xemacs’
subdirectory of one of the installation hierarchies. (If you run in-place, these are direct
subdirectories of the build directory.) Furthermore, XEmacs will also search these
subdirectories in the ‘<root>/1ib/xemacs-<VERSION>’ subdirectory and prefer directories
found there.

By default, XEmacs does not have a pre-configured last package hierarchy. Last hi-
erarchies are primarily for using package hierarchies of outdated versions of XEmacs as
a fallback option. For example, it is possible to run XEmacs 21 with the 20.4 package
hierarchy as a last hierarchy.

It is possible to specify at configure-time the location of the various package hierarchies
with the --package-path option to configure. The early, late, and last components of
the package path are separated by double instead of single colons. If all three components
are present, they locate the early, late, and last package hierarchies respectively. If two
components are present, they locate the early and late hierarchies. If only one component
is present, it locates the late hierarchy. At run time, the package path may also be specified
via the EMACSPACKAGEPATH environment variable.

An XEmacs package hierarchy is laid out just like a normal installed XEmacs directory.
It may have ‘lisp’, ‘etc’, ‘info’, and ‘1ib-src’ subdirectories. (The ‘lib-src’ subdirectory
contains architecture-independent general-purpose scripts interpreted by the shell or Perl.
Java is also being widely used, but Java programs are generally found under ‘etc’, because
they are specific to particular packages such as ‘JDE’ and ‘xslt’.) XEmacs adds these at
appropriate places within the various system-wide paths.

There may be any number of package hierarchy directories.

3.3.3 Directories and Paths

Here is a list of the various directories and paths XEmacs tries to locate during startup.
XEmacs distinguishes between directories and paths specific to version, site, and architec-
ture when looking for them.

version-specific
directories are specific to the version of XEmacs they belong to and typically
reside under ‘<root>/1ib/xemacs-<VERSION>’.

Chapter 3: Entering and Exiting Emacs 43

site-specific
directories are independent of the version of XEmacs they belong to and typi-
cally reside under ‘<root>/lib/xemacs’

architecture-specific
directories are specific both to the version of XEmacs and the architecture it
runs on and typically reside under ‘<root>/1ib/xemacs-<VERSION>/<ARCHITECTURE>'.Jj

During installation, all of these directories may also reside directly under ‘<root>’, be-
cause that is where they are in the XEmacs tarball.

If XEmacs runs with the -debug-paths option (see Section 3.2 [Command Switches],
page 37), it will print the values of these variables, hopefully aiding in debugging any
problems which come up.

lisp-directory
Contains the version-specific location of the Lisp files that come with the core
distribution of XEmacs. XEmacs will search it recursively to a depth of 1 when
setting up load-path.

load-path
Is where XEmacs searches for XEmacs Lisp files with commands like
load-library. It contains the package lisp directories (see further down)
and the version-specific core Lisp directories. If the environment variable
EMACSLOADPATH is set at startup, its directories are prepended to load-path.

Info-directory-list
Contains the location of info files. (See (undefined) [(info)], page (undefined).)
It contains the package info directories and the version-specific core documen-
tation. Moreover, XEmacs will add ‘/usr/info’, ‘/usr/local/info’ as well as
the directories of the environment variable INFOPATH to Info-directory-1list.

exec-directory
Is the directory of architecture-dependent files that come with XEmacs, espe-
cially executable programs intended for XEmacs to invoke.

exec-path
Is the path for executables which XEmacs may want to start. It contains the
package executable paths as well as exec-directory, and the directories of the
environment variables PATH and EMACSPATH.

doc-directory
Is the directory containing the architecture-specific ‘DOC’ file that contains doc-
umentation for XEmacs’ commands.

data-directory
Is the version-specific directory that contains core data files XEmacs uses. It
may be initialized from the EMACSDATA environment variable.

data-directory-list
Is the path where XEmacs looks for data files. It contains package data direc-
tories as well as data-directory.

44

XEmacs User’s Manual

Chapter 4: Basic Editing Commands 45

4 Basic Editing Commands

We now give the basics of how to enter text, make corrections, and save the text in a
file. If this material is new to you, you might learn it more easily by running the Emacs
learn-by-doing tutorial. To use the tutorial, run Emacs and type Control-ht (help-with-
tutorial). You can also use Tutorials item from the Help menu.

XEmacs comes with many translations of tutorial. If your XEmacs is with MULE and
you set up language environment correctly, XEmacs chooses right tutorial when available
(see Section 18.2 [Language Environments], page 143). If you want specific translation, give
C-ht a prefix argument, like C-u C-h t.

To clear the screen and redisplay, type C-I (recenter).

4.1 Inserting Text

To insert printing characters into the text you are editing, just type them. This inserts the
characters you type into the buffer at the cursor (that is, at point; see Section 1.1 [Point],
page 14). The cursor moves forward, and any text after the cursor moves forward too. If
the text in the buffer is ‘FOOBAR’, with the cursor before the ‘B’, then if you type XX you
get ‘FOOXXBAR’, with the cursor still before the ‘B’.

To delete text you have just inserted, use IBSi. IBSi deletes the character before the cursor
(not the one that the cursor is on top of or under; that is the character after the cursor).
The cursor and all characters after it move backwards. Therefore, if you type a printing
character and then type IBsi, they cancel out.

To end a line and start typing a new one, type /RETi. This inserts a newline character
in the buffer. If point is in the middle of a line, RETi splits the line. Typing IDEL when the
cursor is at the beginning of a line deletes the preceding newline, thus joining the line with
the preceding line.

Emacs can split lines automatically when they become too long, if you turn on a special
minor mode called Auto Fill mode. See Section 21.6 [Filling], page 179, for how to use Auto
Fill mode.

If you prefer to have text characters replace (overwrite) existing text rather than shove
it to the right, you can enable Overwrite mode, a minor mode. See Section 29.1 [Minor
Modes], page 281.

Direct insertion works for printing characters and PCi, but other characters act as
editing commands and do not insert themselves. If you need to insert a control character
or a character whose code is above 200 octal, you must quote it by typing the character
Control-q (quoted-insert) first. (This character’s name is normally written C-q for
short.) There are two ways to use C-Q:

e C-q followed by any non-graphic character (even C-g) inserts that character.

e C-g followed by a sequence of octal digits inserts the character with the specified octal
character code. You can use any number of octal digits; any non-digit terminates
the sequence. If the terminating character is IRETi, it serves only to terminate the
sequence; any other non-digit is itself used as input after terminating the sequence.
(The use of octal sequences is disabled in ordinary non-binary Overwrite mode, to give
you a convenient way to insert a digit instead of overwriting with it.)

46 XEmacs User’s Manual

A numeric argument to C-g specifies how many copies of the quoted character should be
inserted (see Section 4.9 [Arguments|, page 51).

Customization information: MDEL, in most modes, runs the command backward-or-
forward-delete-char; IRETI runs the command newline, and self-inserting printing char-
acters run the command self-insert, which inserts whatever character was typed to invoke
it. Some major modes rebind DEL to other commands.

4.2 Changing the Location of Point

To do more than insert characters, you have to know how to move point (see Section 1.1
[Point], page 14). The simplest way to do this is with arrow keys, or by clicking the left
mouse button where you want to move to.

NOTE: Many of the following commands have two versions, one that uses the function
keys (e.g. ILEFTi or IENDi) and one that doesn’t. The former versions may only be available
on X terminals (i.e. not on TTY’s), but the latter are available on all terminals.

C-a
HOME Move to the beginning of the line (beginning-of-1line).
C-e

END Move to the end of the line (end-of-1line).

C-f

RIGHT Move forward one character (forward-char).
C-b

LEFT Move backward one character (backward-char).
M-f

C-RIGHT Move forward one word (forward-word).

M-b

C-LEFT Move backward one word (backward-word).
C-n

DOWN Move down one line, vertically (next-line). This command attempts to keep

the horizontal position unchanged, so if you start in the middle of one line, you
end in the middle of the next. When on the last line of text, C-n creates a new
line and moves onto it.

C-p

UP Move up one line, vertically (previous-line).
C-v

PGDN Move down one page, vertically (scroll-up).
M-v

PGUP Move up one page, vertically (scroll-down).

C-l Clear the frame and reprint everything (recenter). Text moves on the frame
to bring point to the center of the window.

M-r Move point to left margin, vertically centered in the window (move-to-window-
line). Text does not move on the screen.

Chapter 4: Basic Editing Commands 47

A numeric argument says which screen line to place point on. It counts screen
lines down from the top of the window (zero for the top line). A negative
argument counts lines from the bottom (—1 for the bottom line).

C-t Transpose two characters, the ones before and after the cursor (transpose-
chars).

M=

C-HOME Move to the top of the buffer (beginning-of-buffer). With numeric argument
N, move to N/10 of the way from the top. See Section 4.9 [Arguments|, page 51,
for more information on numeric arguments.

M->
C-END Move to the end of the buffer (end-of-buffer).

M-x goto-char
Read a number n and move point to buffer position n. Position 1 is the begin-
ning of the buffer.

M-g Read a number n and move point to line number n (goto-line). Line 1 is the
beginning of the buffer.

M-x set-goal-column
Use the current column of point as the semi-permanent goal columnfor C-n
and C-p (set-goal-column). Henceforth, those commands always move to this
column in each line moved into, or as close as possible given the contents of the
line. This goal column remains in effect until canceled.

C-u M-x set-goal-column
Cancel the goal column. Henceforth, C-n and C-p once again try to avoid
changing the horizontal position, as usual.

If you set the variable track-eol to a non-nil value, then C-n and C-p when at the
end of the starting line move to the end of another line. Normally, track-eol is nil. See
Section 29.3 [Variables|, page 282, for how to set variables such as track-eol.

Normally, C-n on the last line of a buffer appends a newline to it. If the variable next-
line-add-newlines is nil, then C-n gets an error instead (like C-p on the first line).

4.3 Erasing Text

DELI Delete the character before or after point (backward-or-forward-delete-
char). You can customize this behavior by setting the variable delete-key-
deletes-forward.

C-d Delete the character after point (delete-char).
C-k Kill to the end of the line (kill-1line).
M-d Kill forward to the end of the next word (kill-word).

M+DEL Kill back to the beginning of the previous word (backward-kill-word).

You already know about the WEL key which deletes the character before point (that
is, before the cursor). Another key, Control-d (C-d for short), deletes the character after

48 XEmacs User’s Manual

point (that is, the character that the cursor is on). This shifts the rest of the text on the
line to the left. If you type C-d at the end of a line, it joins together that line and the next
line.

To erase a larger amount of text, use the C-k key, which kills a line at a time. If you
type C-k at the beginning or middle of a line, it kills all the text up to the end of the line.
If you type C-k at the end of a line, it joins that line and the next line.

See Section 10.1 [Killing], page 77, for more flexible ways of killing text.

4.4 Files

The commands described above are sufficient for creating and altering text in an Emacs
buffer; the more advanced Emacs commands just make things easier. But to keep any text
permanently you must put it in a le. Files are named units of text which are stored by
the operating system for you to retrieve later by name. To look at or use the contents of a
file in any way, including editing the file with Emacs, you must specify the file name.

Consider a file named ‘/usr/rms/foo.c’. To begin editing this file from Emacs, type:
C-x C-f /usr/rms/foo.c IRETI

Here the file name is given as an argument to the command C-x C-f (find-file). That
command uses the minibu er to read the argument, and you type RETi to terminate the
argument (see Chapter 6 [Minibuffer], page 55).

You can also use the Open... menu item from the File menu, then type the name of the
file to the prompt.

Emacs obeys the command by visiting the file: creating a buffer, copying the contents
of the file into the buffer, and then displaying the buffer for you to edit. If you alter the
text, you can save the new text in the file by typing C-x C-s (save-buffer) or choosing
Save Bu er from the File menu. This makes the changes permanent by copying the altered
buffer contents back into the file ‘/usr/rms/foo.c’. Until you save, the changes exist only
inside Emacs, and the file ‘foo.c’ is unaltered.

To create a file, visit the file with C-x C-f as if it already existed or choose Open... from
the File menu and provide the name for the new file. Emacs will create an empty buffer in
which you can insert the text you want to put in the file. When you save the buffer with
C-x C-s, or by choosing Save Bu er from the File menu, the file is created.

To learn more about using files, See Chapter 15 [Files|, page 113.

4.5 Help

If you forget what a key does, you can find out with the Help character, which is C-h (or
t#1i, which is an alias for C-h). Type C-h k followed by the key you want to know about;
for example, C-h k C-n tells you all about what C-n does. C-h is a prefix key; C-h K is just
one of its subcommands (the command describe-key). The other subcommands of C-h
provide different kinds of help. Type C-h twice to get a description of all the help facilities.
See Chapter 8 [Help], page 65.

Chapter 4: Basic Editing Commands 49

4.6 Blank Lines

Here are special commands and techniques for putting in and taking out blank lines.

C-o Insert one or more blank lines after the cursor (open-line).

C-x C-0 Delete all but one of many consecutive blank lines (delete-blank-lines).

When you want to insert a new line of text before an existing line, you can do it by
typing the new line of text, followed by RETi. However, it may be easier to see what you
are doing if you first make a blank line and then insert the desired text into it. This is easy
to do using the key C-0 (open-line), which inserts a newline after point but leaves point
in front of the newline. After C-0, type the text for the new line. C-0 F O Chas the same
effect as F O ORET, except for the final location of point.

You can make several blank lines by typing C-0 several times, or by giving it a numeric
argument to tell it how many blank lines to make. See Section 4.9 [Arguments], page 51,
for how. If you have a fill prefix, then C-0 command inserts the fill prefix on the new line,
when you use it at the beginning of a line. See Section 21.6.3 [Fill Prefix], page 180.

The easy way to get rid of extra blank lines is with the command C-x C-0 (delete-
blank-lines). C-X C-0 in a run of several blank lines deletes all but one of them. C-x C-0
on a solitary blank line deletes that blank line. When point is on a nonblank line, C-x C-0
deletes any blank lines following that nonblank line.

4.7 Continuation Lines

If you add too many characters to one line without breaking it with fRETi, the line will
grow to occupy two (or more) lines on the screen, with a curved arrow at the extreme right
margin of all but the last of them. The curved arrow says that the following screen line is
not really a distinct line in the text, but just the continuation of a line too long to fit the
screen. Continuation is also called line wrapping.

Sometimes it is nice to have Emacs insert newlines automatically when a line gets too
long. Continuation on the screen does not do that. Use Auto Fill mode (see Section 21.6
[Filling], page 179) if that’s what you want.

Instead of continuation, long lines can be displayed by truncation. This means that all
the characters that do not fit in the width of the frame or window do not appear at all.
They remain in the buffer, temporarily invisible. Right arrow in the last column (instead
of the curved arrow) inform you that truncation is in effect.

Truncation instead of continuation happens whenever horizontal scrolling is in use, and
optionally in all side-by-side windows (see Chapter 17 [Windows], page 139). You can enable
truncation for a particular buffer by setting the variable truncate-lines to non-nil in
that buffer. (See Section 29.3 [Variables], page 282.) Altering the value of truncate-lines
makes it local to the current buffer; until that time, the default value is in effect. The
default is initially nil. See Section 29.3.4 [Locals], page 288.

See Section 12.4 [Display Vars], page 93, for additional variables that affect how text is
displayed.

50 XEmacs User’s Manual

4.8 Cursor Position Information

If you are accustomed to other display editors, you may be surprised that Emacs does not
always display the page number or line number of point in the mode line. In Emacs, this
information is only rarely needed, and a number of commands are available to compute and
print it. Since text is stored in a way that makes it difficult to compute the information, it
is not displayed all the time.

M-x what-page
Print page number of point, and line number within page.

M-x what-line
Print line number of point in the buffer.

M-x line-number-mode
Toggle automatic display of current line number.

M-= Print number of lines and characters in the current region (count-lines-
region). See Chapter 9 [Mark], page 71, for information about the region.

C-x= Print character code of character after point, character position of point, and
column of point (what-cursor-position).

There are several commands for printing line numbers:

e M-x what-line counts lines from the beginning of the file and prints the line number
point is on. The first line of the file is line number 1. You can use these numbers as
arguments to M-x goto-line

e M-x what-page counts pages from the beginning of the file, and counts lines within the
page, printing both of them. See Section 21.5 [Pages|, page 178, for the command C-X
|, which counts the lines in the current page.

¢ M-= (count-lines-region) prints the number of lines in the region (see Chapter 9
[Mark], page 71). See Section 21.5 [Pages], page 178, for the command C-x | which
counts the lines in the

The command C-X = (what-cursor-position) can be used to find out the column that
the cursor is in, and other miscellaneous information about point. It prints a line in the
echo area that looks like this:

Char: ¢ (0143, 99, 0x63) point=18862 of 24800(76%) column 53
(In fact, this is the output produced when point is before ‘column 53’ in the example.)

The four values after ‘Char:’ describe the character that follows point, first by showing
it and then by giving its character code in octal, decimal and hex.

‘point=’is followed by the position of point expressed as a character count. The front

of the buffer counts as position 1, one character later as 2, and so on. The next, larger
number is the total number of characters in the buffer. Afterward in parentheses comes the
position expressed as a percentage of the total size.

‘column’ is followed by the horizontal position of point, in columns from the left edge of
the window.

If the buffer has been narrowed, making some of the text at the beginning and the end
temporarily invisible, C-X = prints additional text describing the current visible range. For
example, it might say:

Chapter 4: Basic Editing Commands 51

Char: ¢ (0143, 99, 0x63) point=19674 of 24575(80%) <19591 - 19703> column 69

where the two extra numbers give the smallest and largest character position that point is
allowed to assume. The characters between those two positions are the visible ones. See
Section 28.3 [Narrowing], page 276.

If point is at the end of the buffer (or the end of the visible part), C-X = omits any
description of the character after point. The output looks like
point=563026 of 563025(100%) column O

4.9 Numeric Arguments

In mathematics and computer usage, the word argument means “data provided to a function
or operation.” Any Emacs command can be given a numeric argument (also called a pre x
argument). Some commands interpret the argument as a repetition count. For example,
giving an argument of ten to the key C-f (the command forward-char, move forward one
character) moves forward ten characters. With these commands, no argument is equivalent
to an argument of one. Negative arguments are allowed. Often they tell a command to
move or act in the opposite direction.

If your keyboard has a IMETAI key (labelled with a diamond on Sun-type keyboards and
labelled ‘A1t’ on some other keyboards), the easiest way to specify a numeric argument is
to type digits and/or a minus sign while holding down the METAi key. For example,

M-5 C-n
would move down five lines. The characters Meta-1, Meta-2, and so on, as well as Meta-- , do
this because they are keys bound to commands (digit-argument and negative-argument)

that are defined to contribute to an argument for the next command. Digits and - modified
with Control, or Control and Meta, also specify numeric arguments.

Another way of specifying an argument is to use the C-u (universal-argument) com-
mand followed by the digits of the argument. With C-u, you can type the argument digits
without holding down modifier keys; C-u works on all terminals. To type a negative ar-
gument, type a minus sign after C-u. Just a minus sign without digits normally means
—1.

C-u followed by a character which is neither a digit nor a minus sign has the special
meaning of “multiply by four”. It multiplies the argument for the next command by four.
C-u twice multiplies it by sixteen. Thus, C-u C-u C-f moves forward sixteen characters.
This is a good way to move forward “fast”, since it moves about 1/5 of a line in the usual
size frame. Other useful combinations are C-u C-n, C-u C-u C-n(move down a good fraction
of a frame), C-u C-u C-0 (make “a lot” of blank lines), and C-u C-k (kill four lines).

Some commands care only about whether there is an argument and not about its value.
For example, the command M-q (fill-paragraph) with no argument fills text; with an
argument, it justifies the text as well. (See Section 21.6 [Filling], page 179, for more infor-
mation on M-¢) Just C-u is a handy way of providing an argument for such commands.

Some commands use the value of the argument as a repeat count, but do something
peculiar when there is no argument. For example, the command C-k (kill-line) with
argument n kills n lines, including their terminating newlines. But C-k with no argument
is special: it kills the text up to the next newline, or, if point is right at the end of the line,
it kills the newline itself. Thus, two C-k commands with no arguments can kill a non-blank

52 XEmacs User’s Manual

line, just like C-k with an argument of one. (See Section 10.1 [Killing], page 77, for more
information on C-k.)

A few commands treat a plain C-u differently from an ordinary argument. A few others
may treat an argument of just a minus sign differently from an argument of —1. These
unusual cases are described when they come up; they are always for reasons of convenience
of use of the individual command.

You can use a numeric argument to insert multiple copies of a character. This is straight-
forward unless the character is a digit; for example, C-u 6 4 ainserts 64 copies of the char-
acter ‘a’. But this does not work for inserting digits; C-u 6 4 1 specifies an argument of
641, rather than inserting anything. To separate the digit to insert from the argument, type
another C-u; for example, C-u 6 4 C-u 1does insert 64 copies of the character ‘1’.

We use the term “prefix argument” as well as “numeric argument” to emphasize that you
type the argument before the command, and to distinguish these arguments from minibuffer
arguments that come after the command.

Chapter 5: Undoing Changes 53

5 Undoing Changes

Emacs allows you to undo all changes you make to the text of a buffer, up to a certain
amount of change (8000 characters). Each buffer records changes individually, and the
undo command always applies to the current buffer. Usually each editing command makes
a separate entry in the undo records, but some commands such as query-replace make
many entries, and very simple commands such as self-inserting characters are often grouped
to make undoing less tedious.

C-xu Undo one batch of changes (usually, one command’s worth) (undo).
C-_ The same.

The command C-X U or C-_ allows you to undo changes. The first time you give this
command, it undoes the last change. Point moves to the text affected by the undo, so you
can see what was undone.

Consecutive repetitions of the C-_ or C-x u commands undo earlier and earlier changes,
back to the limit of what has been recorded. If all recorded changes have already been
undone, the undo command prints an error message and does nothing.

Any command other than an undo command breaks the sequence of undo commands.
Starting at this moment, the previous undo commands are considered ordinary changes that
can themselves be undone. Thus, you can redo changes you have undone by typing C-f or
any other command that have no important effect, and then using more undo commands.

If you notice that a buffer has been modified accidentally, the easiest way to recover is
to type C-_ repeatedly until the stars disappear from the front of the mode line. When
that happens, all the modifications you made have been canceled. If you do not remember
whether you changed the buffer deliberately, type C-_ once. When you see Emacs undo
the last change you made, you probably remember why you made it. If the change was an
accident, leave it undone. If it was deliberate, redo the change as described in the preceding
paragraph.

Whenever an undo command makes the stars disappear from the mode line, the buffer
contents is the same as it was when the file was last read in or saved.

Not all buffers record undo information. Buffers whose names start with spaces don’t;
these buffers are used internally by Emacs and its extensions to hold text that users don’t
normally look at or edit. Minibuffers, help buffers, and documentation buffers also don’t
record undo information.

Emacs can remember at most 8000 or so characters of deleted or modified text in any
one buffer for reinsertion by the undo command. There is also a limit on the number of
individual insert, delete, or change actions that Emacs can remember.

There are two keys to run the undo command, C-x U and C-_, because on some key-
boards, it is not obvious how to type C-_. C-X u is an alternative you can type in the same
fashion on any terminal.

54

XEmacs User’s Manual

Chapter 6: The Minibuffer 55

6 The Minibu er

The minibu er is the facility used by XEmacs commands to read arguments more compli-
cated than a single number. Minibuffer arguments can be file names, buffer names, Lisp
function names, XEmacs command names, Lisp expressions, and many other things, de-
pending on the command reading the argument. You can use the usual XEmacs editing
commands in the minibuffer to edit the argument text.

When the minibuffer is in use, it appears in the echo area, and the cursor moves there.
The beginning of the minibuffer line displays a prompt which says what kind of input you
should supply and how it will be used. Often this prompt is derived from the name of the
command that the argument is for. The prompt normally ends with a colon.

Sometimes a default argument appears in parentheses after the colon; it, too, is part of
the prompt. The default is used as the argument value if you enter an empty argument
(e.g., by just typing IRETi). For example, commands that read buffer names always show a
default, which is the name of the buffer that will be used if you type just RRETi.

The simplest way to enter a minibuffer argument is to type the text you want, terminated
by RETi which exits the minibuffer. You can cancel the command that wants the argument,
and get out of the minibuffer, by typing C-g.

Since the minibuffer uses the screen space of the echo area, it can conflict with other
ways XEmacs customarily uses the echo area. One can avoid such a conflict as described
in section “Customizing Message Display” in The XEmacs Lisp Reference Manual Here is
how XEmacs handles such conflicts by default:

e If a command gets an error while you are in the minibuffer, this does not cancel the
minibuffer. However, the echo area is needed for the error message and therefore the
minibuffer itself is hidden for a while. It comes back after a few seconds, or as soon as
you type anything.

e If in the minibuffer you use a command whose purpose is to print a message in the
echo area, such as C-x =, the message is printed normally, and the minibuffer is hidden
for a while. It comes back after a few seconds, or as soon as you type anything.

e Echoing of keystrokes does not take place while the minibuffer is in use.

6.1 Minibuffers for File Names

Sometimes the minibuffer starts out with text in it. For example, when you are supposed
to give a file name, the minibuffer starts out containing the default directory, which ends
with a slash. This is to inform you which directory the file will be found in if you do not
specify a directory.
For example, the minibuffer might start out with these contents:
Find File: /u2/emacs/src/

where ‘Find File: ' is the prompt. Typing buffer.c specifies the file
‘/u2/emacs/src/buffer.c’. To find files in nearby directories, use .. ; thus, if
you type ../lisp/simple.el , you will get the file named ‘/u2/emacs/lisp/simple.el’.

Alternatively, you can kill with MHDEL the directory names you don’t want (see
Section 21.2 [Words], page 176).

56 XEmacs User’s Manual

If you don’t want any of the default, you can kill it with C-a C-k. But you don’t need to
kill the default; you can simply ignore it. Insert an absolute file name, one starting with a
slash or a tilde, after the default directory. For example, to specify the file ‘/etc/termcap’,
just insert that name, giving these minibuffer contents:

Find File: /u2/emacs/src//etc/termcap

XEmacs gives a special meaning to a double slash (which is not normally a useful thing
to write): it means, “ignore everything before the second slash in the pair.” Thus,
‘/u2/emacs/src/’ is ignored in the example above, and you get the file ‘/etc/termcap’.

If you set insert-default-directory tonil, the default directory is not inserted in the
minibuffer. This way, the minibuffer starts out empty. But the name you type, if relative,
is still interpreted with respect to the same default directory.

6.2 Editing in the Minibuffer

The minibuffer is an XEmacs buffer (albeit a peculiar one), and the usual XEmacs com-
mands are available for editing the text of an argument you are entering.

Since RETi in the minibuffer is defined to exit the minibuffer, you can’t use it to insert a
newline in the minibuffer. To do that, type C-0 or C-q C-j. (Recall that a newline is really
the character control-J.)

The minibuffer has its own window which always has space on the screen but acts as if it
were not there when the minibuffer is not in use. When the minibuffer is in use, its window
is just like the others; you can switch to another window with C-Xx 0, edit text in other
windows and perhaps even visit more files, before returning to the minibuffer to submit the
argument. You can kill text in another window, return to the minibuffer window, and then
yank the text to use it in the argument. See Chapter 17 [Windows], page 139.

There are some restrictions on the use of the minibuffer window, however. You cannot
switch buffers in it—the minibuffer and its window are permanently attached. Also, you
cannot split or kill the minibuffer window. But you can make it taller in the normal fashion
with C-x ~. If you enable Resize-Minibuffer mode, then the minibuffer window expands
vertically as necessary to hold the text that you put in the minibuffer. Use M-x resize-
minibuffer-mode to enable or disable this minor mode (see Section 29.1 [Minor Modes],
page 281).

If while in the minibuffer you issue a command that displays help text of any sort in
another window, you can use the C-M-v command while in the minibuffer to scroll the
help text. This lasts until you exit the minibuffer. This feature is especially useful if a
completing minibuffer gives you a list of possible completions. See Section 17.3 [Other
Window], page 140.

If the variable minibuffer-confirm-incomplete is t, you are asked for confirmation
if there is no known completion for the text you typed. For example, if you attempted to
visit a non-existent file, the minibuffer might read:

Find File: chocolate_bar.c [no completions, confirm]

If you press Return again, that confirms the filename. Otherwise, you can continue
editing it.

XEmacs supports recursive use of the minibuffer. However, it is easy to do this by
accident (because of autorepeating keyboards, for example) and get confused. Therefore,

Chapter 6: The Minibuffer 57

most XEmacs commands that use the minibuffer refuse to operate if the minibuffer window
is selected. If the minibuffer is active but you have switched to a different window, recursive
use of the minibuffer is allowed—if you know enough to try to do this, you probably will
not get confused.

If you set the variable enable-recursive-minibuffers to a non-nil, recursive use of
the minibuffer is always allowed.

6.3 Completion

For certain kinds of arguments, you can use completion to enter the argument value. Com-
pletion means that you type part of the argument, then XEmacs visibly fills in the rest, or
as much as can be determined from the part you have typed.

When completion is available, certain keys—IHTABi, RETi, and lsPCi—are rebound to
complete the text present in the minibuffer into a longer string that it stands for, by
matching it against a set of completion alternatives provided by the command reading the
argument. ? is defined to display a list of possible completions of what you have inserted.

For example, when M-X uses the minibuffer to read the name of a command, it provides
a list of all available XEmacs command names to complete against. The completion keys
match the text in the minibuffer against all the command names, find any additional name
characters implied by the ones already present in the minibuffer, and add those characters
to the ones you have given. This is what makes it possible to type M-x inse I5Pci b RETI
instead of M-x insert-buffer ~ RETi (for example).

Case is normally significant in completion because it is significant in most of the names
that you can complete (buffer names, file names and command names). Thus, ‘fo’ does not
complete to ‘Foo’. When you are completing a name in which case does not matter, case
may be ignored for completion’s sake if specified by program.

When a completion list is displayed, the completions will highlight as you move the
mouse over them. Clicking the middle mouse button on any highlighted completion will
“select” it just as if you had typed it in and hit RET.

6.3.1 Completion Example

A concrete example may help here. If you type M-x au fTABi, the HTABI looks for alternatives
(in this case, command names) that start with ‘au’. There are several, including auto-
fill-mode and auto-save-mode—but they are all the same as far as auto, so the ‘au’ in
the minibuffer changes to ‘auto’.

If you type MABI again immediately, there are multiple possibilities for the very next
character—it could be any of ‘c-"—so0 no more characters are added; instead, iTABI displays
a list of all possible completions in another window.

If you go on to type -f HIABI, this HTABi sees ‘auto-f’. The only command name start-
ing this way is auto-fill-mode, so completion fills in the rest of that. You now have
‘auto-fill-mode’ in the minibuffer after typing just au hrasi f Hrasi. Note that ArABi has
this effect because in the minibuffer it is bound to the command minibuffer-complete
when completion is available.

58 XEmacs User’s Manual

6.3.2 Completion Commands

Here is a list of the completion commands defined in the minibuffer when completion is
available.

hrABI Complete the text in the minibuffer as much as possible (minibuffer-
complete).
tsPCi Complete the minibuffer text, but don’t go beyond one word (minibuffer-

complete-word).

IRETI Submit the text in the minibuffer as the argument, possibly completing first as
described below (minibuffer-complete-and-exit).

? Print a list of all possible completions of the text in the minibuffer (minibuffer-
list-completions).

Fbutton2i Select the highlighted text under the mouse as a minibuffer response. When
the minibuffer is being used to prompt the user for a completion, any valid
completions which are visible on the screen will be highlighted when the mouse
moves over them. Clicking fbutton2i will select the highlighted completion and
exit the minibuffer. (minibuf-select-highlighted-completion).

tEPCi completes much like hrABi, but never goes beyond the next hyphen or space.
If you have ‘auto-f’ in the minibuffer and type (sPCi, it finds that the completion is
‘auto-fill-mode’, but it stops completing after ‘fi1l-’. This gives ‘auto-fill-". An-
other IBPCi at this point completes all the way to ‘auto-fill-mode’. I5PCi in the minibuffer
when completion is available runs the command minibuffer-complete-word.

Here are some commands you can use to choose a completion from a window that displays
a list of completions:

button2up
Clicking mouse button 2 on a completion in the list of possible completions
chooses that completion (mouse-choose-completion). You normally use this
command while point is in the minibuffer; but you must click in the list of
completions, not in the minibuffer itself.

FPRIORI

M-v Typing IPRIORI or M-v, while in the minibuffer, selects the window showing the
completion list buffer (switch-to-completions). This paves the way for using
the commands below. (Selecting that window in the usual ways has the same
effect, but this way is more convenient.)

RETI Typing RETI in the completion list buffer chooses the completion that point
is in or next to (choose-completion). To use this command, you must first
switch windows to the window that shows the list of completions.

MRIGHTI

hrCABI

C-f Typing the right-arrow key RIGHTI, HTABIi or C-f in the completion list buffer

moves point to the following completion (next-list-mode-item).

Chapter 6: The Minibuffer 59

NLEFTI

C-b Typing the left-arrow key LEFTI or C-b in the completion list bujffer moves point
toward the beginning of the buffer, to the previous completion (previous-
list-mode-item).

6.3.3 Strict Completion

There are three different ways that RRETi can work in completing minibuffers, depending on
how the argument will be used.

e Strict completion is used when it is meaningless to give any argument except one of the
known alternatives. For example, when C-X k reads the name of a buffer to kill, it is
meaningless to give anything but the name of an existing buffer. In strict completion,
RETI refuses to exit if the text in the minibuffer does not complete to an exact match.

e Cautious completion is similar to strict completion, except that RET exits only if the
text was an exact match already, not needing completion. If the text is not an exact
match, RRETI does not exit, but it does complete the text. If it completes to an exact
match, a second RETI will exit.

Cautious completion is used for reading file names for files that must already exist.

e Permissive completion is used when any string whatever is meaningful, and the list of
completion alternatives is just a guide. For example, when C-x C-f reads the name of
a file to visit, any file name is allowed, in case you want to create a file. In permissive
completion, IRETi takes the text in the minibuffer exactly as given, without completing
it.

The completion commands display a list of all possible completions in a window whenever
there is more than one possibility for the very next character. Also, typing ? explicitly
requests such a list. If the list of completions is long, you can scroll it with C-M-v (see
Section 17.3 [Other Window], page 140).

6.3.4 Completion Options

When completion is done on file names, certain file names are usually ignored. The variable
completion-ignored-extensions contains a list of strings; a file whose name ends in any
of those strings is ignored as a possible completion. The standard value of this variable has
several elements including ".0", ".elc", ".dvi" and "~". The effect is that, for example,
‘foo’ can complete to ‘foo.c’ even though ‘foo.o’ exists as well. However, if all the possible
completions end in “ignored” strings, then they are not ignored. Ignored extensions do not
apply to lists of completions—those always mention all possible completions.

If a completion command finds the next character is undetermined, it automatically
displays a list of all possible completions. If the variable completion-auto-help is set to
nil, this does not happen, and you must type ? to display the possible completions.

If the variable minibuffer-confirm-incomplete is set to t, then in contexts where
completing-read allows answers that are not valid completions, an extra IRRETi must be
typed to confirm the response. This is helpful for catching typos.

Icomplete mode presents a constantly-updated display that tells you what completions
are available for the text you've entered so far. The command to enable or disable this
minor mode is M-X icomplete-mode.

60 XEmacs User’s Manual

6.4 Minibuffer History

Every argument that you enter with the minibuffer is saved on a minibu er history list so
that you can use it again later in another argument. Special commands load the text of an
earlier argument in the minibuffer. They discard the old minibuffer contents, so you can
think of them as moving through the history of previous arguments.

HUPi

M-p Move to the next earlier argument string saved in the minibuffer history
(previous-history-element).

IDOWNiI

M-n Move to the next later argument string saved in the minibuffer history (next-

history-element).

M-r regexp RETI
Move to an earlier saved argument in the minibuffer history that has a match
for regexp (previous-matching-history-element).

M-s regexp MRETI
Move to a later saved argument in the minibuffer history that has a match for
regexp (next-matching-history-element).

The simplest way to reuse the saved arguments in the history list is to move through the
history list one element at a time. While in the minibuffer, use M-por up-arrow (previous-
history-element) to “move to” the next earlier minibuffer input, and use M-n or down-
arrow (next-history-element) to “move to” the next later input.

The previous input that you fetch from the history entirely replaces the contents of the
minibuffer. To use it as the argument, exit the minibuffer as usual with RRETi. You can
also edit the text before you reuse it; this does not change the history element that you
“moved” to, but your new argument does go at the end of the history list in its own right.

For many minibuffer arguments there is a “default” value. In some cases, the minibuffer
history commands know the default value. Then you can insert the default value into the
minibuffer as text by using M-nto move “into the future” in the history.

There are also commands to search forward or backward through the history; they search
for history elements that match a regular expression that you specify with the minibuffer.
M-r (previous-matching-history-element) searches older elements in the history, while
M-s (next-matching-history-element) searches newer elements. By special dispensation,
these commands can use the minibuffer to read their arguments even though you are already
in the minibuffer when you issue them. As with incremental searching, an uppercase letter
in the regular expression makes the search case-sensitive (see Section 13.6 [Search Case],
page 104).

All uses of the minibuffer record your input on a history list, but there are separate
history lists for different kinds of arguments. For example, there is a list for file names,
used by all the commands that read file names.

There are several other very specific history lists, including one for command names read
by M-x, one for buffer names, one for arguments of commands like query-replace, and one
for compilation commands read by compile. Finally, there is one “miscellaneous” history
list that most minibuffer arguments use.

Chapter 6: The Minibuffer 61

6.5 Repeating Minibuffer Commands

Every command that uses the minibuffer at least once is recorded on a special history list,
together with the values of its arguments, so that you can repeat the entire command. In
particular, every use of M-X is recorded there, since M-X uses the minibuffer to read the
command name.

C-x HESCi hESCi
Re-execute a recent minibuffer command (repeat-complex-command).

M-p Within C-x HESCi hESGi, move to previous recorded command (previous-
history-element).

M-n Within C-X HESCi hESCi, move to the next (more recent) recorded command
(next-history-element).

M-x list-command-history
Display the entire command history, showing all the commands C-x FESCi hESCi
can repeat, most recent first.

C-x HESCi hEST is used to re-execute a recent minibuffer-using command. With no argu-
ment, it repeats the last such command. A numeric argument specifies which command to
repeat; one means the last one, and larger numbers specify earlier ones.

C-x HEsCi hESdi works by turning the previous command into a Lisp expression and then
entering a minibuffer initialized with the text for that expression. If you type just IRET,
the command is repeated as before. You can also change the command by editing the Lisp
expression. Whatever expression you finally submit is what will be executed. The repeated
command is added to the front of the command history unless it is identical to the most
recently executed command already there.

Even if you don’t understand Lisp syntax, it will probably be obvious which command
is displayed for repetition. If you do not change the text, you can be sure the command
will repeat exactly as before.

If you are in the minibuffer for C-X fESCi hEsCi and the command shown to you is not
the one you want to repeat, you can move around the list of previous commands using
M-n and M-p. M-p replaces the contents of the minibuffer with the next earlier recorded
command, and M-n replaces it with the next later command. After finding the desired
previous command, you can edit its expression and then resubmit it by typing RRETi. Any
editing you have done on the command to be repeated is lost if you use M-nor M-p.

M-nand M-pare specially defined within C-X HESGi hESCi to run the commands previous-
history-element and next-history-element.

The list of previous commands using the minibuffer is stored as a Lisp list in the vari-
able command-history. Each element of the list is a Lisp expression which describes one
command and its arguments. Lisp programs can reexecute a command by feeding the
corresponding command-history element to eval.

62

XEmacs User’s Manual

Chapter 7: Running Commands by Name 63

7 Running Commands by Name

The Emacs commands that are used often or that must be quick to type are bound to
keys—short sequences of characters—for convenient use. Other Emacs commands that are
used more rarely are not bound to keys; to run them, you must refer to them by name.

A command name consists, by convention, of one or more words, separated by hyphens:
for example, auto-fill-mode or manual-entry. The use of English words makes the
command name easier to remember than a key made up of obscure characters, even though
it results in more characters to type. You can run any command by name, even if it can be
run by keys as well.

To run a command by name, start with M-X, then type the command name, and finish
with RETi. M-X uses the minibuffer to read the command name. RET exits the minibuffer
and runs the command.

Emacs uses the minibuffer for reading input for many different purposes; on this occasion,
the string ‘M-x’ is displayed at the beginning of the minibuffer as a prompt to remind you
that your input should be the name of a command to be run. See Chapter 6 [Minibuffer],
page 55, for full information on the features of the minibuffer.

You can use completion to enter a command name. For example, to invoke the command
forward-char, type:

M-x forward-char MRETI
or
M-x fo MCABI ¢ MRETI

After you type in M-x fo TAB emacs will give you a possible list of completions from which
you can choose. Note that forward-char is the same command that you invoke with the
key C-f. You can call any command (interactively callable function) defined in Emacs by
its name using M-X regardless of whether or not any keys are bound to it.

If you type C-g while Emacs reads the command name, you cancel the M-X command
and get out of the minibuffer, ending up at top level.

To pass a numeric argument to a command you are invoking with M-X, specify the
numeric argument before the M-x. M-X passes the argument along to the function that it
calls. The argument value appears in the prompt while the command name is being read.

You can use the command M-x interactive to specify a way of parsing arguments for
interactive use of a function. For example, write:

(defun foo (arg) "Doc string" (interactive "p") ...use arg...)

to make arg be the prefix argument when foo is called as a command. The call to
interactive is actually a declaration rather than a function; it tells call-interactively
how to read arguments to pass to the function. When actually called, interactive returns
nil.

The argument of interactive is usually a string containing a code letter followed by a
prompt. Some code letters do not use I/O to get the argument and do not need prompts. To
prompt for multiple arguments, you must provide a code letter, its prompt, a newline, and
another code letter, and so forth. If the argument is not a string, it is evaluated to get a list
of arguments to pass to the function. If you do not provide an argument to interactive,
no arguments are passed when calling interactively.

64 XEmacs User’s Manual

Available code letters are:

a Function name: symbol with a function definition

b Name of existing buffer

B Name of buffer, possibly nonexistent

c Character

C Command name: symbol with interactive function definition

d Value of point as number (does not do 1/0)

D Directory name

e Last mouse event

f Existing file name

F Possibly nonexistent file name

k Key sequence (string)

m Value of mark as number (does not do I/0)

n Number read using minibuffer

N Prefix arg converted to number, or if none, do like code n

p Prefix arg converted to number (does not do I/0)

P Prefix arg in raw form (does not do I/0O)

r Region: point and mark as two numeric arguments, smallest first (does not do
1/0)

S Any string

S Any symbol

v Variable name: symbol that is user-variable-p

X Lisp expression read but not evaluated

X Lisp expression read and evaluated

In addition, if the string begins with ‘*’, an error is signaled if the buffer is read-only.
This happens before reading any arguments. If the string begins with ‘@', the window the
mouse is over is selected before anything else is done. You may use both ‘@ and ‘*’; they
are processed in the order that they appear.

Normally, when describing a command that is run by name, we omit the /RETi that is
needed to terminate the name. Thus we may refer to M-x auto-fill-mode rather than M-x
auto-fill-mode MRETi. We mention the lRETi only when it is necessary to emphasize its
presence, for example, when describing a sequence of input that contains a command name
and arguments that follow it.

M-X is defined to run the command execute-extended-command, which is responsible
for reading the name of another command and invoking it.

Chapter 8: Help 65

8 Help

XEmacs provides extensive help features accessible through a single character, C-h. C-h is
a prefix key that is used only for documentation-printing commands. The characters that
you can type after C-h are called help options. One help option is C-h; that is how you ask
for help about using C-h. To cancel, type C-g. The function key I¥ii is equivalent to C-h.
C-h C-h (help-for-help) displays a list of the possible help options, and then asks you
to type the desired option. It prompts with the string:
ABCFIKLMNPSTVWC-cC-dC-fC-i Ck C-n C-w; ? for more help:

You should type one of those characters.

Typing a third C-h displays a description of what the options mean; Emacs still waits
for you to type an option. To cancel, type C-g.

Most help buffers use a special major mode, Help mode, which lets you scroll conveniently
with 5PGi and IDELI or IBSi.

Here is a summary of the defined help commands.

C-h a regexp RETI
Display a list of functions and variables whose names match regexp (hyper-

apropos).

C-h A regexp
Show all commands whose names contain matches for regexp (command-
apropos).

C-hb Display a table of all key bindings currently in effect, with local bindings of the

current major mode first, followed by all global bindings (describe-bindings).

C-h c key Print the name of the command that key runs (describe-key-briefly). Here
¢ stands for ‘character’. For more extensive information on key, use C-h k.

C-h d function RET

C-h f function HRET
Display documentation on the Lisp function named function (describe-
function). Since commands are Lisp functions, a command name may be
used.

C-hi Run Info, the program for browsing documentation files (info). The complete
XEmacs manual is available online in Info.

C-h k key Display the name and documentation of the command that key runs
(describe-key).

C-h | Display a description of the last 100 characters you typed (view-lossage).

C-hm Display documentation of the current major mode (describe-mode).

C-hn

C-h C-n Display documentation of XEmacs changes, most recent first (view-emacs-
news).

C-hp Find packages by topic keyword (finder-by-keyword).

66 XEmacs User’s Manual

C-h C-p Display a table of all mouse bindings currently in effect now, with local bindings
of the current major mode first, followed by all global bindings (describe-
pointer).

C-hs Display current contents of the syntax table, plus an explanation of what they
mean (describe-syntax). See Section 29.6 [Syntax], page 298.

C-ht Enter the XEmacs interactive tutorial (help-with-tutorial).

C-h v var RET
Display the documentation of the Lisp variable var (describe-variable).

C-h w commantRETi
Print which keys run the command named command (where-is).

C-h BRET
Display info on how to deal with Beta versions of XEmacs (describe-beta).

C-h C group REeTi
Select customization buffer for group (customize).

C-h F RETI
View the local copy of the XEmacs FAQ (xemacs-local-faq).

C-h C-ifile WRETI
Read Info file le with Info browser (Info-query).

C-h C-c commandRET
Look up an Emacs command command in the Emacs manual in the Info system
(Info-goto-emacs-command-node).

C-h C-f function IRETI
Look up an Emacs Lisp function function in the Elisp manual in the Info system
(Info-elisp-ref).

8.1 Documentation for a Key

The most basic C-h options are C-h ¢ (describe-key-briefly) and C-h k (describe-
key). C-hc key prints in the echo area the name of the command that key is bound
to. For example, C-h ¢ C-f prints ‘forward-char’. Since command names are chosen to
describe what the commands do, this is a good way to get a very brief description of what
key does.

C-h k key is similar to C-h ¢ but gives more information. It displays the documentation
string of the function key is bound to as well as its name. key is a string or vector of events.
When called interactively, key may also be a menu selection. This information does not
usually fit into the echo area, so a window is used for the display.

C-h ¢ and C-h k work for any sort of key sequences, including function keys and mouse
events.

Chapter 8: Help 67

8.2 Help by Command or Variable Name

C-h f (describe-function) reads the name of a Lisp function using the minibuffer, then
displays that function’s documentation string in a window. Since commands are Lisp func-
tions, you can use the argument function to get the documentation of a command that you
know by name. For example,

C-h f auto-fill-mode MRETI

displays the documentation for auto-fill-mode. Using C-h f is the only way to see the
documentation of a command that is not bound to any key, that is, a command you would
normally call using M-x. If the variable describe-function-show-arglist is t, describe-
function shows its arglist if the function is not an autoload function.

C-h f is also useful for Lisp functions that you are planning to use in a Lisp program.
For example, if you have just written the expression (make-vector len) and want to make
sure you are using make-vector properly, type C-h f make-vector RETi. Because C-h f
allows all function names, not just command names, you may find that some of your favorite
abbreviations that work in M-x don’t work in C-h f. An abbreviation may be unique among
command names, yet fail to be unique when other function names are allowed.

The function name for C-h f to describe has a default which is used if you type RET
leaving the minibuffer empty. The default is the function called by the innermost Lisp
expression in the buffer around point, provided that is a valid, defined Lisp function name.
For example, if point is located following the text ‘(make-vector (car x)’, the innermost
list containing point is the one that starts with ‘ (make-vector’, so the default is to describe
the function make-vector.

C-h f is often useful just to verify that you have the right spelling for the function name.
If C-h f mentions a name from the buffer as the default, that name must be defined as a
Lisp function. If that is all you want to know, just type C-g to cancel the C-h f command,
then go on editing.

C-h w commantRETi (where-is) tells you what keys are bound to command It prints
a list of the keys in the echo area. Alternatively, it informs you that a command is not
bound to any keys, which implies that you must use M-X to call the command.

C-h v (describe-variable) is like C-h f but describes Lisp variables instead of Lisp
functions. Its default is the Lisp symbol around or before point, if that is the name of a
known Lisp variable. See Section 29.3 [Variables|, page 282.

8.3 Apropos

C-h A Show only symbols that are names of commands (command-apropos).

M-x apropos regexp
Show all symbols whose names contain matches for regexp

A more sophisticated sort of question to ask is, “What are the commands for working
with files?” To ask this question, type C-h a file RETi, which displays a list of all com-
mand names that contain ‘file’, including copy-file, find-file, and so on. With each
command name appears a brief description of how to use the command, and what keys you
can currently invoke it with. For example, it would say that you can invoke find-file by

68 XEmacs User’s Manual

typing C-x C-f. The Ain C-h Astands for ‘Apropos’; C-h Aruns the command command-
apropos. This command normally checks only commands (interactive functions); if you
specify a prefix argument, it checks noninteractive functions as well.

Because C-h Alooks only for functions whose names contain the string you specify, you
must use ingenuity in choosing the string. If you are looking for commands for killing
backwards and C-h a kill-backwards MRETi doesn’t reveal any, don’t give up. Try just
kill , or just backwards, or just back. Be persistent. Pretend you are playing Adventure.
Also note that you can use a regular expression as the argument, for more flexibility (see
Section 13.5 [Regexps], page 99).

Here is a set of arguments to give to C-h a that covers many classes of XEmacs com-
mands, since there are strong conventions for naming the standard XEmacs commands.
By giving you a feel for the naming conventions, this set should also serve to aid you in
developing a technique for picking apropos strings.

char, line, word, sentence, paragraph, region, page, sexp, list, defun, rect, buffer,
frame, window, face, file, dir, register, mode, beginning, end, forward, back-
ward, next, previous, up, down, search, goto, kill, delete, mark, insert, yank,
fill, indent, case, change, set, what, list, find, view, describe, default.

To list all Lisp symbols that contain a match for a regexp, not just the ones that are
defined as commands, use the command M-x apropos instead of C-h A This command does
not check key bindings by default; specify a numeric argument if you want it to check them.

The apropos-documentation command is like apropos except that it searches docu-
mentation strings for matches for the specified regular expression.

The apropos-value command is like apropos except that it searches symbols’ values
for matches for the specified regular expression. This command does not check function
definitions or property lists by default; specify a numeric argument if you want it to check
them.

If the variable apropos-do-all is non-nil, the commands above all behave as if they
had been given a prefix argument.

If you want more information about a function definition, variable or symbol property
listed in the Apropos buffer, you can click on it with Mouse-2or move there and type RRETi .

8.4 Keyword Search for Lisp Libraries

The C-h p command lets you search the standard Emacs Lisp libraries by topic keywords.
Here is a partial list of keywords you can use:

abbrev abbreviation handling, typing shortcuts, macros
bib code related to the ‘bib’ bibliography processor

C C, C++, and Objective-C language support

calendar calendar and time management support

comm communications, networking, remote access to files
data support for editing files of data

docs support for Emacs documentation

dumped files preloaded into Emacs

emulations emulations of other editors
extensions Emacs Lisp language extensions

Chapter 8: Help 69

faces support for multiple fonts

frames support for Emacs frames and window systems

games games, jokes and amusements

hardware support for interfacing with exotic hardware

help support for on-line help systems

hypermedia support for links between text or other media types
i18n internationalization and alternate character-set support
internal code for Emacs internals, build process, defaults
languages specialized modes for editing programming languages
lisp Lisp support, including Emacs Lisp

local code local to your site

maint maintenance aids for the Emacs development group
mail modes for electronic-mail handling

matching various sorts of searching and matching

mouse mouse support

mule multi-language extensions

news support for netnews reading and posting

o0op support for object-oriented programming

outlines support for hierarchical outlining

processes process, subshell, compilation, and job control support
terminals support for terminal types

tex code related to the TeX formatter

tools programming tools

unix front-ends/assistants for, or emulators of, UNIX features
vimns support code for vimns

wp word processing

8.5 Help Mode Commands

Help buffers provide the commands of View mode (see Section 15.10 [Misc File Ops],
page 134), plus a few special commands of their own.

P Ci Scroll forward.
IDETI
HBSi Scroll backward.

When a command name (see Chapter 7 [Running Commands by Name], page 63) or
variable name (see Section 29.3 [Variables|, page 282) appears in the documentation, it
normally appears inside paired single-quotes.

8.6 Other Help Commands

C-hi (info) runs the Info program, which is used for browsing through structured doc-
umentation files. The entire XEmacs manual is available within Info. Eventually all the
documentation of the GNU system will be available. Type h after entering Info to run a
tutorial on using Info.

If you specify a numeric argument, C-h i prompts for the name of a documentation file.
This way, you can browse a file which doesn’t have an entry in the top-level Info menu. It

70 XEmacs User’s Manual

is also handy when you need to get to the documentation quickly, and you know the exact
name of the file.

There are two special help commands for accessing XEmacs documentation through Info.
C-h C-f function RETI enters Info and goes straight to the documentation of the XEmacs
function function. C-h C-k key enters Info and goes straight to the documentation of the
key key. These two keys run the commands Info-elisp-ref and Info-goto-emacs-key-
command-node.

If something surprising happens, and you are not sure what commands you typed, use
C-h| (view-lossage). C-h | prints the last 100 command characters you typed in. If you
see commands that you don’t know, you can use C-h ¢ to find out what they do.

XEmacs has several major modes. Each mode redefines a few keys and makes a few
other changes in how editing works. C-h m(describe-mode) prints documentation on the
current major mode, which normally describes all the commands that are changed in this
mode.

C-h b (describe-bindings) and C-h s (describe-syntax) present information about
the current XEmacs mode that is not covered by C-h m C-h b displays a list of all the key
bindings currently in effect, with the local bindings of the current major mode first, followed
by the global bindings (see Section 29.5 [Key Bindings|, page 293). C-h s displays the
contents of the syntax table with explanations of each character’s syntax (see Section 29.6
[Syntax], page 298).

You can get a similar list for a particular prefix key by typing C-h after the prefix key.
(There are a few prefix keys for which this does not work—those that provide their own
bindings for C-h. One of these is IESGi, because IEsd C-h is actually C-M-h, which marks a
defun.)

The other C-h options display various files of useful information. C-h C-w(describe-
no-warranty) displays the full details on the complete absence of warranty for XEmacs. C-h
N (view-emacs-news) displays the file ‘xemacs/etc/NEWS’, which contains documentation
on XEmacs changes arranged chronologically. C-h F (xemacs-local-faq) displays local
version of the XEmacs frequently-answered-questions-list. C-h t (help-with-tutorial)
displays the learn-by-doing XEmacs tutorial. C-h C-c (describe-copying) displays the
file ‘xemacs/etc/COPYING', which tells you the conditions you must obey in distribut-
ing copies of XEmacs. C-h C-d (describe-distribution) displays another file named
‘xemacs/etc/DISTRIB’, which tells you how you can order a copy of the latest version of
XEmacs.

Chapter 9: Selecting Text 71

9 Selecting Text

Many Emacs commands operate on an arbitrary contiguous part of the current buffer. You
can select text in two ways:

e You use special keys to select text by defining a region between point and the mark.

e If you are running XEmacs under X, you can also select text with the mouse.

9.1 The Mark and the Region

To specify the text for a command to operate on, set the mark at one end of it, and move
point to the other end. The text between point and the mark is called the region. You can
move point or the mark to adjust the boundaries of the region. It doesn’t matter which one
is set first chronologically, or which one comes earlier in the text.

Once the mark has been set, it remains until it is set again at another place. The mark
remains fixed with respect to the preceding character if text is inserted or deleted in a
buffer. Each Emacs buffer has its own mark; when you return to a buffer that had been
selected previously, it has the same mark it had before.

Many commands that insert text, such as C-y (yank) and M-x insert-buffer ., position
the mark at one end of the inserted text—the opposite end from where point is positioned,
so that the region contains the text just inserted.

Aside from delimiting the region, the mark is useful for marking a spot that you may
want to go back to. To make this feature more useful, Emacs remembers 16 previous
locations of the mark in the mark ring.

9.1.1 Setting the Mark

Here are some commands for setting the mark:

C-tgpci Set the mark where point is (set-mark-command).

C-a The same.

C-x C-x Interchange mark and point (exchange-point-and-mark).
C< Pushes a mark at the beginning of the buffer.

C-> Pushes a mark at the end of the buffer.

For example, to convert part of the buffer to all upper-case, you can use the C-x C-
U (upcase-region) command, which operates on the text in the region. First go to the
beginning of the text you want to capitalize and type C-5PC to put the mark there, then
move to the end, and then type C-x C-u to capitalize the selected region. You can also
set the mark at the end of the text, move to the beginning, and then type C-x C-u. Most
commands that operate on the text in the region have the word region in their names.

The most common way to set the mark is with the C-f5PCi command (set-mark-
command). This command sets the mark where point is. You can then move point away,
leaving the mark behind. It is actually incorrect to speak of the character C-t8PCi; there is
no such character. When you type t6PCi while holding down WCTRLI, you get the character
C-@ on most terminals. This character is actually bound to set-mark-command. But unless

72 XEmacs User’s Manual

you are unlucky enough to have a terminal where typing C-tsPCi does not produce C-@, you
should think of this character as C-tsPCi.

Since terminals have only one cursor, Emacs cannot show you where the mark is located.
Most people use the mark soon after they set it, before they forget where it is. But you
can see where the mark is with the command C-X C-X (exchange-point-and-mark) which
puts the mark where point was and point where the mark was. The extent of the region is
unchanged, but the cursor and point are now at the previous location of the mark.

Another way to set the mark is to push the mark to the beginning of a buffer while
leaving point at its original location. If you supply an argument to C-< (mark-beginning-
of-buffer), the mark is pushed n/10 of the way from the true beginning of the buffer. You
can also set the mark at the end of a buffer with C-> (mark-end-of-buffer). It pushes the
mark to the end of the buffer, leaving point alone. Supplying an argument to the command
pushes the mark n/10 of the way from the true end of the buffer.

If you are using XEmacs under the X window system, you can set the variable zmacs-
regions to t. This makes the current region (defined by point and mark) highlight and
makes it available as the X clipboard selection, which means you can use the menu bar
items on it. See Section 10.3.4 [Active Regions], page 83, for more information.

C-x C-x is also useful when you are satisfied with the location of point but want to move
the mark; do C-x C-x to put point there and then you can move it. A second use of C-X
C-X, if necessary, puts the mark at the new location with point back at its original location.

9.1.2 Operating on the Region

Once you have created an active region, you can do many things to the text in it:
e Kill it with C-w (see Section 10.1 [Killing], page 77).
e Save it in a register with C-X r s (see Chapter 11 [Registers|, page 87).
e Save it in a buffer or a file (see Section 10.4 [Accumulating Text], page 84).

e Convert case with C-x C-I or C-x C-u
(see Section 21.7 [Case], page 181).

e Evaluate it as Lisp code with M-x eval-region (see Section 23.4 [Lisp Eval], page 213).
e Fill it as text with M-q (see Section 21.6 [Filling], page 179).

e Print hardcopy with M-x print-region (see Section 28.4 [Hardcopy], page 277).

e Indent it with C-x HABi or C-M-\ (see Chapter 20 [Indentation], page 165).

9.1.3 Commands to Mark Textual Objects

There are commands for placing point and the mark around a textual object such as a
word, list, paragraph or page.

M-e Set mark after end of next word (mark-word). This command and the following
one do not move point.

C-M-e Set mark after end of next Lisp expression (mark-sexp).

M-h Put region around current paragraph (mark-paragraph).

C-M-h Put region around current Lisp defun (mark-defun).

C-x h Put region around entire buffer (mark-whole-buffer).

Chapter 9: Selecting Text 73

C-x C-p Put region around current page (mark-page).

M-@ (mark-word) puts the mark at the end of the next word, while C-M-@ (mark-sexp)
puts it at the end of the next Lisp expression. These characters sometimes save you some
typing.

A number of commands are available that set both point and mark and thus delimit an
object in the buffer. M-h (mark-paragraph) moves point to the beginning of the paragraph
that surrounds or follows point, and puts the mark at the end of that paragraph (see
Section 21.4 [Paragraphs], page 177). You can then indent, case-convert, or kill the whole
paragraph. In the same fashion, C-M-h (mark-defun) puts point before and the mark after
the current or following defun (see Section 22.3 [Defuns|, page 186). C-x C-p (mark-page)
puts point before the current page (or the next or previous, depending on the argument), and
mark at the end (see Section 21.5 [Pages|, page 178). The mark goes after the terminating
page delimiter (to include it), while point goes after the preceding page delimiter (to exclude
it). Finally, C-x h (mark-whole-buffer) sets up the entire buffer as the region by putting
point at the beginning and the mark at the end.

9.1.4 The Mark Ring

Aside from delimiting the region, the mark is also useful for marking a spot that you may
want to go back to. To make this feature more useful, Emacs remembers 16 previous
locations of the mark in the mark ring. Most commands that set the mark push the old
mark onto this ring. To return to a marked location, use C-u C-i5Pdi (or C-u C-@); this is
the command set-mark-command given a numeric argument. The command moves point
to where the mark was, and restores the mark from the ring of former marks. Repeated use
of this command moves point to all the old marks on the ring, one by one. The marks you
have seen go to the end of the ring, so no marks are lost.

Each buffer has its own mark ring. All editing commands use the current buffer’s mark
ring. In particular, C-u C-t5PCi always stays in the same buffer.

Many commands that can move long distances, such as M< (beginning-of-buffer),
start by setting the mark and saving the old mark on the mark ring. This makes it easier
for you to move back later. Searches set the mark, unless they do not actually move point.
When a command sets the mark, ‘Mark Set’ is printed in the echo area.

The variable mark-ring-max is the maximum number of entries to keep in the mark
ring. If that many entries exist and another entry is added, the last entry in the list is
discarded. Repeating C-u C-l5PCi circulates through the entries that are currently in the
ring.

The variable mark-ring holds the mark ring itself, as a list of marker objects in the
order most recent first. This variable is local in every buffer.

9.2 Selecting Text with the Mouse

If you are using XEmacs under X, you can use the mouse pointer to select text. (The
normal mouse pointer is an I-beam, the same pointer that xterm uses.)

The glyph variable text-pointer-glyph controls the shape of the mouse pointer when
over text. You can also control the shape of the mouse pointer when over nontext using
nontext-pointer-glyph, and the shape of the mouse pointer when over the modeline using

74 XEmacs User’s Manual

modeline-pointer-glyph. (Remember, you should use set-glyph-image, not setq, to set
one of these variables.)

If you want to get fancy, you can set the foreground and background colors of the mouse
pointer by setting the pointer face.

There are two ways to select a region of text with the mouse:

To select a word in text, double-click with the left mouse button while the mouse cursor is
over the word. The word is highlighted when selected. On monochrome monitors, a stippled
background indicates that a region of text has been highlighted. On color monitors, a color
background indicates highlighted text. You can triple-click to select whole lines.

To select an arbitrary region of text:

1. Move the mouse cursor over the character at the beginning of the region of text you
want to select.

2. Press and hold the left mouse button.

3. While holding the left mouse button down, drag the cursor to the character at the end
of the region of text you want to select.

4. Release the left mouse button.

The selected region of text is highlighted.

Once a region of text is selected, it becomes the primary X selection (see Section 10.3
[Using X Selections|, page 81) as well as the Emacs selected region. You can paste it into
other X applications and use the options from the Edit pull-down menu on it. Since it is
also the Emacs region, you can use Emacs region commands on it.

9.3 Additional Mouse Operations

XEmacs also provides the following mouse functions. Most of these are not bound to mouse
gestures by default, but they are provided for your customization pleasure. For example,
if you wanted shift-left (that is, holding down the IBhifii key and clicking the left mouse
button) to delete the character at which you are pointing, then you could do this:

(global-set-key ’(shift buttonl) ’mouse-del-char)
g y

mouse-del-char
Delete the character pointed to by the mouse.

mouse-delete-window
Delete the Emacs window that the mouse is on.

mouse-keep-one-window
Select the Emacs window that the mouse is on, then delete all other windows
on this frame.

mouse-Kill-line
Kill the line pointed to by the mouse.

mouse-line-length
Print the length of the line indicated by the pointer.

mouse-scroll
Scroll point to the mouse position.

Chapter 9: Selecting Text 75

mouse-select
Select the Emacs window the mouse is on.

mouse-select-and-split
Select the Emacs window mouse is on, then split it vertically in half.

mouse-set-mark
Select the Emacs window the mouse is on and set the mark at the mouse
position. Display the cursor at that position for a second.

mouse-set-point
Select the Emacs window that the mouse is on and move point to the mouse
position.

mouse-track
Make a selection with the mouse. This is the default binding of the left mouse
button (fbuttonti).

mouse-track-adjust
Extend the existing selection. This is the default binding of IBhifi-buttonti .

mouse-track-and-copy-to-cutbuffer
Make a selection like mouse-track, but also copy it to the cut buffer.

mouse-track-delete-and-insert
Make a selection with the mouse and insert it at point. This is the default
binding of fontrol-shift-buttonti .

mouse-track-insert
Make a selection with the mouse and insert it at point. This is the default
binding of Feontrol-buttonli .

mouse-window-to-region
Narrow a window to the region between the cursor and the mouse pointer.

The M-x mouse-track command should be bound to a mouse button. If you click-and-
drag, the selection is set to the region between the point of the initial click and the point
at which you release the button. These positions do not need to be ordered.

If you click-and-release without moving the mouse, the point is moved, and the selection
is disowned (there will be no selection owner.) The mark will be set to the previous position
of point.

If you double-click, the selection will extend by symbols instead of by characters. If you
triple-click, the selection will extend by lines.

If you drag the mouse off the top or bottom of the window, you can select pieces of text
that are larger than the visible part of the buffer; the buffer will scroll as necessary.

The selected text becomes the current X selection, and is also copied to the top of the
kill ring. Point will be left at the position at which you released the button and the mark
will be left at the initial click position. Bind a mouse click to mouse-track-and-copy-
to-cutbuffer to copy selections to the cut buffer. (See also the mouse-track-adjust
command, on Shift-buttonl .)

The M-x mouse-track-adjust command should be bound to a mouse button. The
selection will be enlarged or shrunk so that the point of the mouse click is one of its

76 XEmacs User’s Manual

endpoints. This is only meaningful after the mouse-track command (fbuttonti) has been
executed.
The M-x mouse-track-delete-and-insert command is exactly the same as the mouse-

track command on tbuttonli, except that point is not moved; the selected text is immediately
inserted after being selected; and the text of the selection is deleted.

The M-Xx mouse-track-insert command is exactly the same as the mouse-track com-
mand on tbuttondi, except that point is not moved; the selected text is immediately inserted
after being selected; and the selection is immediately disowned afterwards.

Chapter 10: Killing and Moving Text 77

10 Killing and Moving Text

Killing means erasing text and copying it into the Kill ring , from which it can be retrieved by
yanking it. Some other systems that have recently become popular use the terms “cutting”
and “pasting” for these operations.

The most common way of moving or copying text with Emacs is to kill it and later yank
it in one or more places. This is safe because all the text killed recently is stored in the kill
ring, and it is versatile, because you can use the same commands for killing syntactic units
and for moving those units. There are other ways of copying text for special purposes.

Emacs has only one kill ring, so you can kill text in one buffer and yank it in another
buffer. If you are using XEmacs under X, you can also use the X selection mechanism to
copy text from one buffer to another, or between applications. See Section 10.3 [Using X
Selections], page 81.

10.1 Deletion and Killing

Most commands that erase text from the buffer save it. You can get the text back if you
change your mind, or you can move or copy it to other parts of the buffer. Commands which
erase text and save it in the kill ring are known as kill commands. Some other commands
erase text but do not save it; they are known as delete commands. (This distinction is
made only for erasing text in the buffer.)

The commands’ names and individual descriptions use the words ‘kill’ and ‘delete’ to
indicate what they do. If you perform a kill or delete command by mistake, use the C-x u
(undo) command to undo it (see Chapter 5 [Undo], page 53). The delete commands include
C-d (delete-char) and IDEL (delete-backward-char), which delete only one character
at a time, and those commands that delete only spaces or newlines. Commands that can
destroy significant amounts of nontrivial data usually kill.

10.1.1 Deletion

C-d Delete next character (delete-char).

IDELI Delete previous character (delete-backward-char).

M-\ Delete spaces and tabs around point (delete-horizontal-space).

M4EPCi Delete spaces and tabs around point, leaving one space (just-one-space).

C-x C-0 Delete blank lines around the current line (delete-blank-lines).

M-~ Join two lines by deleting the intervening newline, and any indentation following
it (delete-indentation).

The most basic delete commands are C-d (delete-char) and IDELI (delete-backward-
char). C-d deletes the character after point, the one the cursor is “on top of”. Point
doesn’t move. DEL deletes the character before the cursor, and moves point back. You can
delete newlines like any other characters in the buffer; deleting a newline joins two lines.
Actually, C-d and DEL aren’t always delete commands; if you give them an argument, they
kill instead, since they can erase more than one character this way.

The other delete commands delete only formatting characters: spaces, tabs and newlines.
M-\ (delete-horizontal-space) deletes all spaces and tab characters before and after

78 XEmacs User’s Manual

point. M+5PCi (just-one-space) does the same but leaves a single space after point,
regardless of the number of spaces that existed previously (even zero).

C-x C-0 (delete-blank-lines) deletes all blank lines after the current line. If the
current line is blank, it deletes all blank lines preceding the current line as well as leaving
one blank line, the current line. M-~ (delete-indentation) joins the current line and the
previous line, or, if given an argument, joins the current line and the next line by deleting
a newline and all surrounding spaces, possibly leaving a single space. See Chapter 20
[Indentation], page 165.

10.1.2 Killing by Lines

C-k Kill rest of line or one or more lines (kill-line).

The simplest kill command is C-k. If given at the beginning of a line, it kills all the text
on the line, leaving the line blank. If given on a blank line, the blank line disappears. As
a consequence, a line disappears completely if you go to the front of a non-blank line and
type C-K twice.

More generally, C-k kills from point up to the end of the line, unless it is at the end of a
line. In that case, it kills the newline following the line, thus merging the next line into the
current one. Emacs ignores invisible spaces and tabs at the end of the line when deciding
which case applies: if point appears to be at the end of the line, you can be sure the newline
will be killed.

If you give C-k a positive argument, it kills that many lines and the newlines that
follow them (however, text on the current line before point is not killed). With a negative
argument, C-k kills back to a number of line beginnings. An argument of —2 means kill
back to the second line beginning. If point is at the beginning of a line, that line beginning
doesn’t count, so C-u - 2 C-k with point at the front of a line kills the two previous lines.

C-k with an argument of zero kills all the text before point on the current line.

10.1.3 Other Kill Commands

C-w Kill region (from point to the mark) (kill-region). See Section 21.2 [Words],
page 176.
M-d Kill word (kill-word).

M4DELI Kill word backwards (backward-kill-word).

C-x el Kill back to beginning of sentence (backward-kill-sentence). See
Section 21.3 [Sentences], page 177.

M-k Kill to end of sentence (kill-sentence).
C-M-k Kill sexp (kill-sexp). See Section 22.2 [Lists], page 184.
M-z char Kill up to next occurrence of char (zap-to-char).

C-w(kill-region) is a very general kill command; it kills everything between point and
the mark. You can use this command to kill any contiguous sequence of characters by first
setting the mark at one end of a sequence of characters, then going to the other end and
typing C-w

Chapter 10: Killing and Moving Text 79

A convenient way of killing is combined with searching: M-z (zap-to-char) reads a
character and kills from point up to (but not including) the next occurrence of that character
in the buffer. If there is no next occurrence, killing goes to the end of the buffer. A numeric
argument acts as a repeat count. A negative argument means to search backward and kill
text before point.

Other syntactic units can be killed: words, with M4DELI and M-d (see Section 21.2
[Words], page 176); sexps, with C-M-k (see Section 22.2 [Lists|, page 184); and sentences,
with C-X IDELI and M-K (see Section 21.3 [Sentences], page 177).

10.2 Yanking

Yanking means getting back text which was killed. Some systems call this “pasting”. The
usual way to move or copy text is to kill it and then yank it one or more times.

C-y Yank last killed text (yank).

M-y Replace re-inserted killed text with the previously killed text (yank-pop).
M-w Save region as last killed text without actually killing it (copy-region-as-
kill).

C-M-w Append next kill to last batch of killed text (append-next-kill).

10.2.1 The Kill Ring

All killed text is recorded in the Kill ring, a list of blocks of text that have been killed.
There is only one kill ring, used in all buffers, so you can kill text in one buffer and yank
it in another buffer. This is the usual way to move text from one file to another. (See
Section 10.4 [Accumulating Text|, page 84, for some other ways.)

If you have two separate Emacs processes, you cannot use the kill ring to move text. If
you are using XEmacs under X, however, you can use the X selection mechanism to move
text from one to another.

If you are using XEmacs under X and have one Emacs process with multiple frames,
they do share the same kill ring. You can kill or copy text in one Emacs frame, then yank
it in the other frame belonging to the same process.

The command C-y (yank) reinserts the text of the most recent kill. It leaves the cursor
at the end of the text and sets the mark at the beginning of the text. See Chapter 9 [Mark],
page 71.

C-u C-y yanks the text, leaves the cursor in front of the text, and sets the mark after
it, if the argument is with just a C-u. Any other argument, including C-u and digits, has
different results, described below, under “Yanking Earlier Kills”.

To copy a block of text, you can also use M-w(copy-region-as-kill), which copies the
region into the kill ring without removing it from the buffer. M-wis similar to C-wfollowed
by C-y but does not mark the buffer as “modified” and does not actually cut anything.

10.2.2 Appending Kills

Normally, each kill command pushes a new block onto the kill ring. However, two or more
kill commands in a row combine their text into a single entry, so that a single C-y yanks it all
back. This means you don’t have to kill all the text you want to yank in one command; you

80 XEmacs User’s Manual

can kill line after line, or word after word, until you have killed what you want, then get it
all back at once using C-y. (Thus we join television in leading people to kill thoughtlessly.)

Commands that kill forward from point add onto the end of the previous killed text.
Commands that kill backward from point add onto the beginning. This way, any sequence of
mixed forward and backward kill commands puts all the killed text into one entry without
rearrangement. Numeric arguments do not break the sequence of appending kills. For
example, suppose the buffer contains:

This is the first
line of sample text
and here is the third.

with point at the beginning of the second line. If you type C-k C-u 2 M4DELI C-K, the first
C-k kills the text ‘line of sample text’, C-u 2 M4DEL kills ‘the first’ with the newline
that followed it, and the second C-Kk kills the newline after the second line. The result is
that the buffer contains ‘This is and here is the third.’ and a single kill entry contains
‘the firstRETi line of sample textiRETi —all the killed text, in its original order.

If a kill command is separated from the last kill command by other commands (not
just numeric arguments), it starts a new entry on the kill ring. To force a kill command
to append, first type the command C-M-w(append-next-kill). C-M-wtells the following
command, if it is a kill command, to append the text it kills to the last killed text, instead
of starting a new entry. With C-M-w you can kill several separated pieces of text and
accumulate them to be yanked back in one place.

10.2.3 Yanking Earlier Kills

To recover killed text that is no longer the most recent kill, you need the Meta-y (yank-pop)
command. You can use M-y only after a C-y or another M-y. It takes the text previously
yanked and replaces it with the text from an earlier kill. To recover the text of the next-to-
the-last kill, first use C-y to recover the last kill, then M-y to replace it with the previous
kill.

You can think in terms of a “last yank” pointer which points at an item in the kill
ring. Each time you kill, the “last yank” pointer moves to the new item at the front of
the ring. C-y yanks the item which the “last yank” pointer points to. M-y moves the “last
yank” pointer to a different item, and the text in the buffer changes to match. Enough M-y
commands can move the pointer to any item in the ring, so you can get any item into the
buffer. Eventually the pointer reaches the end of the ring; the next M-y moves it to the first
item again.

Yanking moves the “last yank” pointer around the ring, but does not change the order
of the entries in the ring, which always runs from the most recent kill at the front to the
oldest one still remembered.

Use M-y with a numeric argument to advance the “last yank” pointer by the specified
number of items. A negative argument moves the pointer toward the front of the ring; from
the front of the ring, it moves to the last entry and starts moving forward from there.

Once the text you are looking for is brought into the buffer, you can stop doing M-y
commands and the text will stay there. Since the text is just a copy of the kill ring item,
editing it in the buffer does not change what’s in the ring. As long you don'’t kill additional

Chapter 10: Killing and Moving Text 81

text, the “last yank” pointer remains at the same place in the kill ring: repeating C-y will
yank another copy of the same old kill.

If you know how many M-y commands it would take to find the text you want, you
can yank that text in one step using C-y with a numeric argument. C-y with an argument
greater than one restores the text the specified number of entries back in the kill ring. Thus,
C-u 2 C-y gets the next to the last block of killed text. It is equivalent to C-y M-y. C-y
with a numeric argument starts counting from the “last yank” pointer, and sets the “last
yank” pointer to the entry that it yanks.

The variable kill-ring-max controls the length of the kill ring; no more than that many
blocks of killed text are saved.

10.3 Using X Selections

In the X window system, mouse selections provide a simple mechanism for text transfer
between different applications. In a typical X application, you can select text by pressing
the left mouse button and dragging the cursor over the text you want to copy. The text
becomes the primary X selection and is highlighted. The highlighted region is also the
Emacs selected region.

e Since the region is the primary X selection, you can go to a different X application and
click the middle mouse button: the text that you selected in the previous application
is pasted into the current application.

e Since the region is the Emacs selected region, you can use all region commands (C-w,
M-wetc.) as well as the options of the Edit menu to manipulate the selected text.

10.3.1 The Clipboard Selection

There are other kinds of X selections besides the Primary selection; one common one is
the Clipboard selection. Some applications prefer to transfer data using this selection
in preference to the Primary. Omne can transfer text from the Primary selection to the
Clipboard selection with the Copy command under the Edit menu in the menubar.

Usually, the clipboard selection is not visible. However, if you run the ‘xclipboard’
application, the text most recently copied to the clipboard (with the Copy command) is
displayed in a window. Any time new text is thus copied, the ‘xclipboard’ application
makes a copy of it and displays it in its window. The value of the clipboard can survive the
lifetime of the running Emacs process. The xclipboard man page provides more details.

Warning: If you use the ‘xclipboard’ application, remember that it maintains a list of
all things that have been pasted to the clipboard (that is, copied with the Copy command).
If you don’t manually delete elements from this list by clicking on the Delete button in the
xclipboard window, the clipboard will eventually consume a lot of memory.

In summary, some X applications (such as ‘xterm’) allow one to paste text in them from
XEmacs in the following way:

e Drag out a region of text in Emacs with the left mouse button, making that text be
the Primary selection.

e C(Click the middle button in the other application, pasting the Primary selection.

With some other applications (notably, the OpenWindows and Motif tools) you must
use this method instead:

82 XEmacs User’s Manual

e Drag out a region of text in Emacs with the left mouse button, making that text be
the Primary selection.

e Copy the selected text to the Clipboard selection by selecting the Copy menu item
from the Edit menu, or by hitting the Copy key on your keyboard.

e Paste the text in the other application by selecting Paste from its menu, or by hitting
the Paste key on your keyboard.

10.3.2 Miscellaneous X Selection Commands

M-X x-copy-primary-selection
Copy the primary selection to both the kill ring and the Clipboard.

M-x x-insert-selection
Insert the current selection into the buffer at point.

M-x x-delete-primary-selection
Deletes the text in the primary selection without copying it to the kill ring or
the Clipboard.

M-x x-kill-primary-selection
Deletes the text in the primary selection and copies it to both the kill ring and
the Clipboard.

M-x x-mouse-Kkill
Kill the text between point and the mouse and copy it to the clipboard and to
the cut buffer.

M-x x-own-secondary-selection
Make a secondary X selection of the given argument.

M-x x-own-selection
Make a primary X selection of the given argument.

M-x x-set-point-and-insert-selection
Set point where clicked and insert the primary selection or the cut buffer.

10.3.3 X Cut Bu ers

X cut buffers are a different, older way of transferring text between applications. XEmacs
supports cut buffers for compatibility with older programs, even though selections are now
the preferred way of transferring text.

X has a concept of applications "owning" selections. When you select text by clicking
and dragging inside an application, the application tells the X server that it owns the
selection. When another application asks the X server for the value of the selection, the X
server requests the information from the owner. When you use selections, the selection data
is not actually transferred unless someone wants it; the act of making a selection doesn’t
transfer data. Cut buffers are different: when you "own" a cut buffer, the data is actually
transferred to the X server immediately, and survives the lifetime of the application.

Any time a region of text becomes the primary selection in Emacs, Emacs also copies
that text to the cut buffer. This makes it possible to copy text from an XEmacs buffer and
paste it into an older, non-selection-based application (such as Emacs 18).

Note: Older versions of Emacs could not access the X selections, only the X cut buffers.

Chapter 10: Killing and Moving Text 83

10.3.4 Active Regions

By default, both the text you select in an Emacs buffer using the click-and-drag mechanism
and text you select by setting point and the mark is highlighted. You can use Emacs region
commands as well as the Cut and Copy commands on the highlighted region you selected
with the mouse.

If you prefer, you can make a distinction between text selected with the mouse and text
selected with point and the mark by setting the variable zmacs-regions to nil. In that
case:

e The text selected with the mouse becomes both the X selection and the Emacs selected
region. You can use menu-bar commands as well as Emacs region commands on it.

e The text selected with point and the mark is not highlighted. You can only use Emacs
region commands on it, not the menu-bar items.

Active regions originally come from Zmacs, the Lisp Machine editor. The idea behind
them is that commands can only operate on a region when the region is in an "active"
state. Put simply, you can only operate on a region that is highlighted.

The variable zmacs-regions checks whether LISPM-style active regions should be used.
This means that commands that operate on the region (the area between point and the
mark) only work while the region is in the active state, which is indicated by highlighting.
Most commands causes the region to not be in the active state; for example, C-wonly works
immediately after activating the region.

More specifically:
e Commands that operate on the region only work if the region is active.

e Ounly a very small set of commands causes the region to become active— those com-
mands whose semantics are to mark an area, such as mark-defun.

e The region is deactivated after each command that is executed, except that motion
commands do not change whether the region is active or not.

set-mark-command (C-SPQ pushes a mark and activates the region. Moving the cursor
with normal motion commands (C-n, C-p, etc.) will cause the region between point and the
recently-pushed mark to be highlighted. It will remain highlighted until some non-motion
command is executed.

exchange-point-and-mark (C-x C-X) activates the region. So if you mark a region and
execute a command that operates on it, you can reactivate the same region with C-x C-x
(or perhaps C-x C-x C-x C-X) to operate on it again.

Generally, commands that push marks as a means of navigation, such as beginning-of-
buffer (M<) and end-of-buffer (M->), do not activate the region. However, commands
that push marks as a means of marking an area of text, such as mark-defun (M-C-h),
mark-word (M-@), and mark-whole-buffer (C-x h), do activate the region.

When zmacs-regions is t, there is no distinction between the primary X selection and
the active region selected by point and the mark. To see this, set the mark (hC-=SPGi) and
move the cursor with any cursor-motion command: the region between point and mark is
highlighted, and you can watch it grow and shrink as you move the cursor.

Any other commands besides cursor-motion commands (such as inserting or deleting
text) will cause the region to no longer be active; it will no longer be highlighted, and will
no longer be the primary selection. Region can be explicitly deactivated with C-g.

84 XEmacs User’s Manual

Commands that require a region (such as C-w) signal an error if the region is not active.
Certain commands cause the region to be in its active state. The most common ones are
push-mark (IC:SPdi) and exchange-point-and-mark (C-x C-x).

When zmacs-regions is t, programs can be non-intrusive on the state of the region
by setting the variable zmacs-region-stays to a non-nil value. If you are writing a new
Emacs command that is conceptually a “motion” command and should not interfere with
the current highlightedness of the region, then you may set this variable. It is reset to nil
after each user command is executed.

When zmacs-regions is t, programs can make the region between point and mark go
into the active (highlighted) state by using the function zmacs-activate-region. Ounly a
small number of commands should ever do this.

When zmacs-regions is t, programs can deactivate the region between point and the
mark by using zmacs-deactivate-region. Note: you should not have to call this function;
the command loop calls it when appropriate.

10.4 Accumulating Text

Usually you copy or move text by killing it and yanking it, but there are other ways that are
useful for copying one block of text in many places, or for copying many scattered blocks
of text into one place.

If you like, you can accumulate blocks of text from scattered locations either into a buffer
or into a file. The relevant commands are described here. You can also use Emacs registers
for storing and accumulating text. See Chapter 11 [Registers], page 87.

M-x append-to-buffer

Append region to contents of specified buffer (append-to-buffer).
M-x prepend-to-buffer

Prepend region to contents of specified buffer.

M-x copy-to-buffer
Copy region into specified buffer, deleting that buffer’s old contents.

M-x insert-buffer
Insert contents of specified buffer into current buffer at point.

M-x append-to-file
Append region to the end of the contents of specified file.

To accumulate text into a buffer, use the command M-x append-to-buffer , which in-
serts a copy of the region into the buffer bu ername, at the location of point in that buffer.
If there is no buffer with the given name, one is created.

If you append text to a buffer that has been used for editing, the copied text goes to the
place where point is. Point in that buffer is left at the end of the copied text, so successive
uses of append-to-buffer accumulate the text in the specified buffer in the same order
as they were copied. Strictly speaking, this command does not always append to the text
already in the buffer; but if this command is the only command used to alter a buffer, it
does always append to the existing text because point is always at the end.

M-x prepend-to-buffer is similar to append-to-buffer, but point in the other buffer
is left before the copied text, so successive prependings add text in reverse order. M-X

Chapter 10: Killing and Moving Text 85

copy-to-buffer is similar, except that any existing text in the other buffer is deleted, so
the buffer is left containing just the text newly copied into it.

You can retrieve the accumulated text from that buffer with M-x insert-buffer , which
takes bu ername as an argument. It inserts a copy of the text in buffer bu ername into the
selected buffer. You could alternatively select the other buffer for editing, perhaps moving
text from it by killing or with append-to-buffer. See Chapter 16 [Buffers], page 135, for
background information on buffers.

Instead of accumulating text within Emacs in a buffer, you can append text directly into
a file with M-x append-to-file , which takes le-name as an argument. It adds the text
of the region to the end of the specified file. The file is changed immediately on disk. This
command is normally used with files that are not being visited in Emacs. Using it on a file
that Emacs is visiting can produce confusing results, because the file’s text inside Emacs
does not change while the file itself changes.

10.5 Rectangles

The rectangle commands affect rectangular areas of text: all characters between a certain
pair of columns, in a certain range of lines. Commands are provided to kill rectangles, yank
killed rectangles, clear them out, or delete them. Rectangle commands are useful with text
in multicolumnar formats, like code with comments at the right, or for changing text into
or out of such formats.

To specify the rectangle a command should work on, put the mark at one corner and point
at the opposite corner. The specified rectangle is called the region-rectangle because it is
controlled about the same way the region is controlled. Remember that a given combination
of point and mark values can be interpreted either as specifying a region or as specifying a
rectangle; it is up to the command that uses them to choose the interpretation.

M-x delete-rectangle
Delete the text of the region-rectangle, moving any following text on each line
leftward to the left edge of the region-rectangle.

M-x kill-rectangle
Similar, but also save the contents of the region-rectangle as the “last killed
rectangle”.

M-x yank-rectangle
Yank the last killed rectangle with its upper left corner at point.

M-x open-rectangle
Insert blank space to fill the space of the region-rectangle. The previous contents
of the region-rectangle are pushed rightward.

M-x clear-rectangle
Clear the region-rectangle by replacing its contents with spaces.

The rectangle operations fall into two classes: commands deleting and moving rectangles,
and commands for blank rectangles.

There are two ways to get rid of the text in a rectangle: you can discard the text (delete
it) or save it as the “last killed” rectangle. The commands for these two ways are M-X
delete-rectangle and M-x kill-rectangle . In either case, the portion of each line that

86 XEmacs User’s Manual

falls inside the rectangle’s boundaries is deleted, causing following text (if any) on the line
to move left.

Note that “killing” a rectangle is not killing in the usual sense; the rectangle is not stored
in the kill ring, but in a special place that only records the most recently killed rectangle
(that is, does not append to a killed rectangle). Different yank commands have to be used
and only one rectangle is stored, because yanking a rectangle is quite different from yanking
linear text and yank-popping commands are difficult to make sense of.

Inserting a rectangle is the opposite of deleting one. You specify where to put the
upper left corner by putting point there. The rectangle’s first line is inserted at point,
the rectangle’s second line is inserted at a point one line vertically down, and so on. The
number of lines affected is determined by the height of the saved rectangle.

To insert the last killed rectangle, type M-x yank-rectangle . This can be used to convert
single-column lists into double-column lists; kill the second half of the list as a rectangle
and then yank it beside the first line of the list.

There are two commands for working with blank rectangles: M-X clear-rectangle
erases existing text, and M-x open-rectangle inserts a blank rectangle. Clearing a rectangle
is equivalent to deleting it and then inserting a blank rectangle of the same size.

Rectangles can also be copied into and out of registers. See Section 11.3 [Rectangle
Registers], page 88.

Chapter 11: Registers 87

11 Registers

XEmacs registersare places in which you can save text or positions for later use. Once you
save text or a rectangle in a register, you can copy it into the buffer once or many times; a
position saved in a register is used by moving point to that position. Rectangles can also
be copied into and out of registers (see Section 10.5 [Rectangles], page 85).

Each register has a name which is a single character. A register can store a piece of text,
a rectangle, a position, a window configuration, or a file name, but only one thing at any
given time. Whatever you store in a register remains there until you store something else
in that register. To see what a register r contains, use M-x view-register

M-X view-register IRETi r
Display a description of what register r contains.

M-X view-register reads a register name as an argument and then displays the contents
of the specified register.

11.1 Saving Positions in Registers

Saving a position records a place in a buffer so that you can move back there later. Moving
to a saved position switches to that buffer and moves point to that place in it.

C-xr IBPCi I
Save position of point in register r (point-to-register).

C-xrjr Jump to the position saved in register r (jump-to-register).

To save the current position of point in a register, choose a name r and type C-X r 8PCi
r. The register r retains the position thus saved until you store something else in that
register.

The command C-x r jr moves point to the position recorded in register r. The register
is not affected; it continues to record the same location. You can jump to the same position
using the same register as often as you want.

If you use C-x rj to go to a saved position, but the buffer it was saved from has been
killed, C-x r j tries to create the buffer again by visiting the same file. Of course, this works
only for buffers that were visiting files.

11.2 Saving Text in Registers

When you want to insert a copy of the same piece of text many times, it can be impractical
to use the kill ring, since each subsequent kill moves the piece of text further down on the
ring. It becomes hard to keep track of the argument needed to retrieve the same text with
C-y. An alternative is to store the text in a register with C-x r s (copy-to-register) and
then retrieve it with C-x ri (insert-register).

C-xrsr Copy region into register r (copy-to-register).

Cxrgr
C-xrir Insert text contents of register r (insert-register).

88 XEmacs User’s Manual

C-xrsr stores a copy of the text of the region into the register named r. Given a
numeric argument, C-X r s r deletes the text from the buffer as well.

C-xrir inserts the text from register r in the buffer. By default it leaves point before

the text and places the mark after it. With a numeric argument (C-u), it puts point after
the text and the mark before it.

11.3 Saving Rectangles in Registers

A register can contain a rectangle instead of lines of text. The rectangle is represented as
a list of strings. See Section 10.5 [Rectangles], page 85, for basic information on rectangles
and how to specify rectangles in a buffer.

C-xrrr Copy the region-rectangle into register r (copy-rectangle-to-register).
With a numeric argument, delete it as well.

Cxrgr
C-xrir Insert the rectangle stored in register r (if it contains a rectangle) (insert-
register).

The C-xrir command inserts linear text if the register contains that, or inserts a
rectangle if the register contains one.

See also the command sort-columns, which you can think of as sorting a rectangle. See
Section 28.1 [Sorting], page 271.

11.4 Saving Window Configurations in Registers

You can save the window configuration of the selected frame in a register, or even the
configuration of all windows in all frames, and restore the configuration later.

C-xrwr Save the state of the selected frame’s windows in register r (window-
configuration-to-register).

M-x frame-configuration-to-register RETI r
Save the state of all frames, including all their windows, in register r (frame-
configuration-to-register).

Use C-Xxrjr to restore a window or frame configuration. This is the same command
used to restore a cursor position. When you restore a frame configuration, any existing
frames not included in the configuration become invisible. If you wish to delete these
frames instead, use C-u C-xrjr

11.5 Keeping Numbers in Registers

There are commands to store a number in a register, to insert the number in the buffer
in decimal, and to increment it. These commands can be useful in keyboard macros (see
Section 29.4 [Keyboard Macros|, page 291).

C-u number C-xr n reg
Store number into register reg (number-to-register).

C-u number C-x r + reg
Increment the number in register reg by number (increment-register).

Chapter 11: Registers 89

C-xrgreg
Insert the number from register reg into the buffer.

C-xr g is the same command used to insert any other sort of register contents into the
buffer.

11.6 Keeping File Names in Registers

If you visit certain file names frequently, you can visit them more conveniently if you put
their names in registers. Here’s the Lisp code used to put a file name in a register:
(set-register ? r '(file . name)
For example,
(set-register ?z ‘(file . "/usr/src/xemacs/src/ChangelLog"))

puts the file name shown in register ‘z’.

To visit the file whose name is in register r, type C-x r j r . (This is the same command
used to jump to a position or restore a frame configuration.)

11.7 Bookmarks

Bookmarks are somewhat like registers in that they record positions you can jump to. Unlike
registers, they have long names, and they persist automatically from one Emacs session to
the next. The prototypical use of bookmarks is to record “where you were reading” in
various files.

Note: bookmark.el is distributed in edit-utils package. You need to install that to use
bookmark facility (see Section 23.8 [Packages|, page 217).

C-X r m RRET
Set the bookmark for the visited file, at point.

C-x r m bookmark FRETi
Set the bookmark named bookmark at point (bookmark-set).

C-x r b bookmark RET
Jump to the bookmark named bookmark (bookmark-jump).

C-xrl List all bookmarks (1ist-bookmarks).

M-x bookmark-save
Save all the current bookmark values in the default bookmark file.

The prototypical use for bookmarks is to record one current position in each of several
files. So the command C-x r m, which sets a bookmark, uses the visited file name as the
default for the bookmark name. If you name each bookmark after the file it points to, then
you can conveniently revisit any of those files with C-x r b, and move to the position of the
bookmark at the same time.

To display a list of all your bookmarks in a separate buffer, type C-xrl| (list-
bookmarks). If you switch to that buffer, you can use it to edit your bookmark definitions or
annotate the bookmarks. Type C-h min that buffer for more information about its special
editing commands.

When you kill XEmacs, XEmacs offers to save your bookmark values in your default
bookmark file, ‘*/.emacs.bmk’, if you have changed any bookmark values. You can also

90 XEmacs User’s Manual

save the bookmarks at any time with the M-x bookmark-save command. The bookmark
commands load your default bookmark file automatically. This saving and loading is how
bookmarks persist from one XEmacs session to the next.

If you set the variable bookmark-save-flag to 1, then each command that sets a book-
mark will also save your bookmarks; this way, you don’t lose any bookmark values even if
XEmacs crashes. (The value, if a number, says how many bookmark modifications should
go by between saving.)

Bookmark position values are saved with surrounding context, so that bookmark-jump
can find the proper position even if the file is modified slightly. The variable bookmark-
search-size says how many characters of context to record, on each side of the bookmark’s
position.

Here are some additional commands for working with bookmarks:

M-x bookmark-load ReTi filename HRET
Load a file named lename that contains a list of bookmark values. You can use
this command, as well as bookmark-write, to work with other files of bookmark
values in addition to your default bookmark file.

M-x bookmark-write HRET filename RET
Save all the current bookmark values in the file lename.

M-x bookmark-delete RETi bookmark RETi
Delete the bookmark named bookmark.

M-x bookmark-insert-location RETI bookmark IRETI
Insert in the buffer the name of the file that bookmark bookmark points to.

M-x bookmark-insert RETI bookmark RETi
Insert in the buffer the contents of the file that bookmark bookmark points to.

Chapter 12: Controlling the Display 91

12 Controlling the Display

Since only part of a large buffer fits in the window, XEmacs tries to show the part that is
likely to be interesting. The display control commands allow you to specify which part of
the text you want to see.

C-l Clear frame and redisplay, scrolling the selected window to center point verti-
cally within it (recenter).

C-v

pgdn

next Scroll forward (a windowful or a specified number of lines) (scroll-up). On
most X keyboards, you can get this functionality using the key labelled ‘Page
Down’, which generates either next or pgdn.

M-v

pgup

prior Scroll backward (scroll-down). On most X keyboards, you can get this func-
tionality using the key labelled ‘Page Up’, which generates either prior or pgup.

arg C-l Scroll so point is on line arg (recenter).

C-x <

C-pgdn

C-next Scroll text in current window to the left (scroll-left).

C-x >

C-pgup

C-prior Scroll to the right (scroll-right).

Cx$ Make deeply indented lines invisible (set-selective-display).

12.1 Scrolling

If a buffer contains text that is too large to fit entirely within the window that is displaying
the buffer, XEmacs shows a contiguous section of the text. The section shown always
contains point.

Scrolling means moving text up or down in the window so that different parts of the
text are visible. Scrolling forward means that text moves up, and new text appears at the
bottom. Scrolling backward moves text down and new text appears at the top.

Scrolling happens automatically if you move point past the bottom or top of the window.
You can also explicitly request scrolling with the commands in this section.

The most basic scrolling command is C-I (recenter) with no argument. It clears the
entire frame and redisplays all windows. In addition, it scrolls the selected window so that
point is halfway down from the top of the window.

The scrolling commands C-v and M-v let you move all the text in the window up or
down a few lines. C-v (scroll-up) with an argument shows you that many more lines at
the bottom of the window, moving the text and point up together as C-I might. C-v with a
negative argument shows you more lines at the top of the window. Meta-v (scroll-down)
is like C-v, but moves in the opposite direction.

92 XEmacs User’s Manual

To read the buffer a windowful at a time, use C-v with no argument. C-v takes the last
two lines at the bottom of the window and puts them at the top, followed by nearly a whole
windowful of lines not previously visible. Point moves to the new top of the window if it
was in the text scrolled off the top. M-v with no argument moves backward with similar
overlap. The number of lines of overlap across a C-v or M-V is controlled by the variable
next-screen-context-lines; by default, it is two.

Another way to scroll is using C-I with a numeric argument. C-l does not clear the frame
when given an argument; it only scrolls the selected window. With a positive argument
n, C-I repositions text to put point n lines down from the top. An argument of zero puts
point on the very top line. Point does not move with respect to the text; rather, the text
and point move rigidly on the frame. C-I with a negative argument puts point that many
lines from the bottom of the window. For example, C-u - 1 C-l puts point on the bottom
line, and C-u - 5 C-I puts it five lines from the bottom. Just C-u as argument, as in C-u
C-l, scrolls point to the center of the frame.

Scrolling happens automatically if point has moved out of the visible portion of the text
when it is time to display. Usually scrolling is done to put point vertically centered within
the window. However, if the variable scroll-step has a non-zero value, an attempt is
made to scroll the buffer by that many lines; if that is enough to bring point back into
visibility, that is what happens.

Scrolling happens automatically if point has moved out of the visible portion of the text
when it is time to display. Usually scrolling is done to put point vertically centered within
the window. However, if the variable scroll-step has a non-zero value, an attempt is
made to scroll the buffer by that many lines; if that is enough to bring point back into
visibility, that is what happeuns.

If you set scroll-step to a small value because you want to use arrow keys to scroll
the screen without recentering, the redisplay preemption will likely make XEmacs keep
recentering the screen when scrolling fast, regardless of scroll-step. To prevent this,
set scroll-conservatively to a small value, which will have the result of overriding the
redisplay preemption.

12.2 Horizontal Scrolling

The text in a window can also be scrolled horizontally. This means that each line of text
is shifted sideways in the window, and one or more characters at the beginning of each line
are not displayed at all. When a window has been scrolled horizontally in this way, text
lines are truncated rather than continued (see Section 4.7 [Continuation Lines|, page 49),
with a ‘$’” appearing in the first column when there is text truncated to the left, and in the
last column when there is text truncated to the right.

The command C-X < (scroll-left) scrolls the selected window to the left by n columns
with argument n. With no argument, it scrolls by almost the full width of the window
(two columns less, to be precise). C-X > (scroll-right) scrolls similarly to the right. The
window cannot be scrolled any farther to the right once it is displaying normally (with each
line starting at the window’s left margin); attempting to do so has no effect.

Chapter 12: Controlling the Display 93

12.3 Selective Display

XEmacs can hide lines indented more than a certain number of columns (you specify how
many columns). This allows you to get an overview of a part of a program.

To hide lines, type C-X $ (set-selective-display) with a numeric argument n. (See
Section 4.9 [Arguments|, page 51, for information on giving the argument.) Lines with
at least n columns of indentation disappear from the screen. The only indication of their
presence are three dots (‘. .."), which appear at the end of each visible line that is followed
by one or more invisible ones.

The invisible lines are still present in the buffer, and most editing commands see them
as usual, so it is very easy to put point in the middle of invisible text. When this happens,
the cursor appears at the end of the previous line, after the three dots. If point is at the
end of the visible line, before the newline that ends it, the cursor appears before the three
dots.

The commands C-n and C-p move across the invisible lines as if they were not there.

To make everything visible again, type C-x $ with no argument.

12.4 Variables Controlling Display

This section contains information for customization only. Beginning users should skip it.

When you reenter XEmacs after suspending, XEmacs normally clears the screen and
redraws the entire display. On some terminals with more than one page of memory, it
is possible to arrange the termcap entry so that the ‘ti’ and ‘te’ strings (output to the
terminal when XEmacs is entered and exited, respectively) switch between pages of memory
S0 as to use one page for XEmacs and another page for other output. In that case, you
might want to set the variable no-redraw-on-reenter to non-nil so that XEmacs will
assume, when resumed, that the screen page it is using still contains what XEmacs last
wrote there.

The variable echo-keystrokes controls the echoing of multi-character keys; its value is
the number of seconds of pause required to cause echoing to start, or zero, meaning don’t
echo at all. See Section 1.2 [Echo Areal, page 14.

If the variable ctl-arrow is nil, control characters in the buffer are displayed with octal
escape sequences, all except newline and tab. If its value is t, then control characters will
be printed with an up-arrow, for example ~A

If its value is not t and not nil, then characters whose code is greater than 160 (that
is, the space character (32) with its high bit set) will be assumed to be printable, and will
be displayed without alteration. This is the default when running under X Windows, since
XEmacs assumes an 1SO/8859-1 character set (also known as “Latinl”). The ctl-arrow
variable may also be set to an integer, in which case all characters whose codes are greater
than or equal to that value will be assumed to be printable.

Altering the value of ctl-arrow makes it local to the current buffer; until that time, the
default value is in effect. See Section 29.3.4 [Locals|, page 288.

Normally, a tab character in the buffer is displayed as whitespace which extends to
the next display tab stop position, and display tab stops come at intervals equal to eight
spaces. The number of spaces per tab is controlled by the variable tab-width, which is

94 XEmacs User’s Manual

made local by changing it, just like ctl-arrow. Note that how the tab character in the
buffer is displayed has nothing to do with the definition of HTABi as a command.

If you set the variable selective-display-ellipses to nil, the three dots at the end
of a line that precedes invisible lines do not appear. There is no visible indication of the
invisible lines. This variable becomes local automatically when set.

Chapter 13: Searching and Replacement 95

13 Searching and Replacement

Like other editors, Emacs has commands for searching for occurrences of a string. The
principal search command is unusual in that it is incremental: it begins to search before
you have finished typing the search string. There are also non-incremental search commands
more like those of other editors.

Besides the usual replace-string command that finds all occurrences of one string
and replaces them with another, Emacs has a fancy replacement command called query-
replace which asks interactively which occurrences to replace.

13.1 Incremental Search

An incremental search begins searching as soon as you type the first character of the search
string. As you type in the search string, Emacs shows you where the string (as you have
typed it so far) is found. When you have typed enough characters to identify the place
you want, you can stop. Depending on what you do next, you may or may not need to
terminate the search explicitly with a lRETI.

C-s Incremental search forward (isearch-forward).
C-r Incremental search backward (isearch-backward).

C-s starts an incremental search. C-S reads characters from the keyboard and positions
the cursor at the first occurrence of the characters that you have typed. If you type C-s
and then F, the cursor moves right after the first ‘F’. Type an Q and see the cursor move to
after the first ‘F0’. After another Q the cursor is after the first ‘F00’ after the place where
you started the search. Meanwhile, the search string ‘FO0’ has been echoed in the echo area.

The echo area display ends with three dots when actual searching is going on. When
search is waiting for more input, the three dots are removed. (On slow terminals, the three
dots are not displayed.)

If you make a mistake in typing the search string, you can erase characters with IDEL.
Each EL cancels the last character of the search string. This does not happen until
Emacs is ready to read another input character; first it must either find, or fail to find,
the character you want to erase. If you do not want to wait for this to happen, use C-g as
described below.

When you are satisfied with the place you have reached, you can type RRETI (or HC-mi),
which stops searching, leaving the cursor where the search brought it. Any command not
specially meaningful in searches also stops the search and is then executed. Thus, typing
C-a exits the search and then moves to the beginning of the line. IRETI is necessary only if
the next command you want to type is a printing character, IDELI, FESCi, or another control
character that is special within searches (C-q, C-w C-r, C-s, or C-y).

Sometimes you search for ‘FO0’ and find it, but were actually looking for a different
occurrence of it. To move to the next occurrence of the search string, type another C-s. Do
this as often as necessary. If you overshoot, you can cancel some C-s characters with IDEL .

After you exit a search, you can search for the same string again by typing just C-s C-s:
the first C-s is the key that invokes incremental search, and the second C-S means “search
again”.

96 XEmacs User’s Manual

If the specified string is not found at all, the echo area displays the text ‘Failing
I-Search’. The cursor is after the place where Emacs found as much of your string as it
could. Thus, if you search for ‘FOOT’, and there is no ‘FO0T’, the cursor may be after the
‘FOO’ in ‘FOOL’. At this point there are several things you can do. If you mistyped the
search string, correct it. If you like the place you have found, you can type IRRET or some
other Emacs command to “accept what the search offered”. Or you can type C-g, which
removes from the search string the characters that could not be found (the ‘T’ in ‘FOO0T’),
leaving those that were found (the ‘FO0’ in ‘FOO0T’). A second C-g at that point cancels the
search entirely, returning point to where it was when the search started.

If a search is failing and you ask to repeat it by typing another C-s, it starts again from
the beginning of the buffer. Repeating a failing backward search with C-r starts again from
the end. This is called wrapping around. ‘Wrapped’ appears in the search prompt once this
has happened.

The C-g “quit” character does special things during searches; just what it does depends
on the status of the search. If the search has found what you specified and is waiting for
input, C-g cancels the entire search. The cursor moves back to where you started the search.
If C-g is typed when there are characters in the search string that have not been found—
because Emacs is still searching for them, or because it has failed to find them—then the
search string characters which have not been found are discarded from the search string.
The search is now successful and waiting for more input, so a second C-g cancels the entire
search.

To search for a control character such as C-S or /DEL or MESCi, you must quote it by
typing C-q first. This function of C-q is analogous to its meaning as an Emacs command:
it causes the following character to be treated the way a graphic character would normally
be treated in the same context.

To search backwards, you can use C-r instead of C-s to start the search; C-r is the key
that runs the command (isearch-backward) to search backward. You can also use C-r
to change from searching forward to searching backwards. Do this if a search fails because
the place you started was too far down in the file. Repeated C-r keeps looking for more
occurrences backwards. C-s starts going forward again. You can cancel C-r in a search
with IDEL.

The characters C-y and C-wcan be used in incremental search to grab text from the
buffer into the search string. This makes it convenient to search for another occurrence of
text at point. C-wcopies the word after point as part of the search string, advancing point
over that word. Another C-s to repeat the search will then search for a string including
that word. C-y is similar to C-wbut copies the rest of the current line into the search string.

The characters M-pand M-ncan be used in an incremental search to recall things which
you have searched for in the past. A list of the last 16 things you have searched for is
retained, and M-pand M-nlet you cycle through that ring.

The character M4TABi does completion on the elements in the search history ring. For
example, if you know that you have recently searched for the string POTATOE, you could
type C-s P O MAABI. If you had searched for other strings beginning with PO then you
would be shown a list of them, and would need to type more to select one.

Chapter 13: Searching and Replacement 97

You can change any of the special characters in incremental search via the normal key-
binding mechanism: simply add a binding to the isearch-mode-map. For example, to make
the character C-b mean “search backwards” while in isearch-mode, do this:

(define-key isearch-mode-map "\C-b" ’isearch-repeat-backward)

These are the default bindings of isearch-mode:

DEL Delete a character from the incremental search string (isearch-delete-char).
RET Exit incremental search (isearch-exit).

C-q Quote special characters for incremental search (isearch-quote-char).

C-s Repeat incremental search forward (isearch-repeat-forward).

C-r Repeat incremental search backward (isearch-repeat-backward).

C-y Pull rest of line from buffer into search string (isearch-yank-line).

C-w Pull next word from buffer into search string (isearch-yank-word).

C-g Cancels input back to what has been found successfully, or aborts the isearch

(isearch-abort).

M-p Recall the previous element in the isearch history ring (isearch-ring-
retreat).

M-n Recall the next element in the isearch history ring (isearch-ring-advance).

M-ABI Do completion on the elements in the isearch history ring (isearch-complete).

Any other character which is normally inserted into a buffer when typed is automatically
added to the search string in isearch-mode.

13.1.1 Slow Terminal Incremental Search

Incremental search on a slow terminal uses a modified style of display that is designed
to take less time. Instead of redisplaying the buffer at each place the search gets to, it
creates a new single-line window and uses that to display the line the search has found.
The single-line window appears as soon as point gets outside of the text that is already on
the screen.

When the search is terminated, the single-line window is removed. Only at this time the
window in which the search was done is redisplayed to show its new value of point.

The three dots at the end of the search string, normally used to indicate that searching
is going on, are not displayed in slow style display.

The slow terminal style of display is used when the terminal baud rate is less than or
equal to the value of the variable search-slow-speed, initially 1200.

The number of lines to use in slow terminal search display is controlled by the variable
search-slow-window-lines. Its normal value is 1.

98 XEmacs User’s Manual

13.2 Non-Incremental Search

Emacs also has conventional non-incremental search commands, which require you type the
entire search string before searching begins.

C-s RETi string RETI
Search for string.

C-r RRETi string RETI
Search backward for string.

To do a non-incremental search, first type C-s fRETi (or C-s C-m). This enters the
minibuffer to read the search string. Terminate the string with IRETi to start the search. If
the string is not found, the search command gets an error.

By default, C-s invokes incremental search, but if you give it an empty argument, which
would otherwise be useless, it invokes non-incremental search. Therefore, C-s IRRETI invokes
non-incremental search. C-r lRETI also works this way.

Forward and backward non-incremental searches are implemented by the commands
search-forward and search-backward. You can bind these commands to keys. The
reason that incremental search is programmed to invoke them as well is that C-s RRETi is
the traditional sequence of characters used in Emacs to invoke non-incremental search.

Non-incremental searches performed using C-s IRRETI do not call search-forward right
away. They first check if the next character is C-w which requests a word search.

13.3 Word Search

Word search looks for a sequence of words without regard to how the words are separated.
More precisely, you type a string of many words, using single spaces to separate them, and
the string is found even if there are multiple spaces, newlines or other punctuation between
the words.

Word search is useful in editing documents formatted by text formatters. If you edit
while looking at the printed, formatted version, you can’t tell where the line breaks are in
the source file. Word search, allows you to search without having to know the line breaks.

C-s lRETI C-w words fRETI
Search for words, ignoring differences in punctuation.

C-r RETI C-w words RETI
Search backward for words, ignoring differences in punctuation.

Word search is a special case of non-incremental search. It is invoked with C-s RETI C-w
followed by the search string, which must always be terminated with another lRETi. Being
non-incremental, this search does not start until the argument is terminated. It works by
constructing a regular expression and searching for that. See Section 13.4 [Regexp Search],
page 99.

You can do a backward word search with C-r lRETi C-w

Forward and backward word searches are implemented by the commands word-search-
forward and word-search-backward. You can bind these commands to keys. The reason
that incremental search is programmed to invoke them as well is that C-s IRETIi C-wis the
traditional Emacs sequence of keys for word search.

Chapter 13: Searching and Replacement 99

13.4 Regular Expression Search

A regular expression(regexp for short) is a pattern that denotes a (possibly infinite) set
of strings. Searching for matches for a regexp is a powerful operation that editors on Unix
systems have traditionally offered.

To gain a thorough understanding of regular expressions and how to use them to best
advantage, we recommend that you study Mastering Regular Expressions, by Je rey E.F.
Friedl, O'Reilly and Associates, 1997 (It’s known as the "Hip Owls" book, because of
the picture on its cover.) You might also read the manuals to (undefined) [(gawk)Top],
page (undefined), (undefined) [(ed)Top], page (undefined), sed grep, (undefined)
[(perl)Top|, page (undefined), (undefined) [(regex)Top|, page (undefined), (undefined)
[(rx)Top], page (undefined), pcre, and (undefined) [(flex)Top], page (undefined), which
also make good use of regular expressions.

The XEmacs regular expression syntax most closely resembles that of ed, or grep, the
GNU versions of which all utilize the GNU regex library. XEmacs’ version of regex has
recently been extended with some Perl-like capabilities, described in the next section.

In XEmacs, you can search for the next match for a regexp either incrementally or not.

Incremental search for a regexp is done by typing M-C-s (isearch-forward-regexp).
This command reads a search string incrementally just like C-s, but it treats the search
string as a regexp rather than looking for an exact match against the text in the buffer.
Each time you add text to the search string, you make the regexp longer, and the new
regexp is searched for. A reverse regexp search command isearch-backward-regexp also
exists, bound to M-C-r.

All of the control characters that do special things within an ordinary incremental search
have the same functionality in incremental regexp search. Typing C-s or C-r immediately
after starting a search retrieves the last incremental search regexp used: incremental regexp
and non-regexp searches have independent defaults.

Non-incremental search for a regexp is done by the functions re-search-forward and
re-search-backward. You can invoke them with M-X or bind them to keys. You can also
call re-search-forward by way of incremental regexp search with M-C-s IRETi; similarly
for re-search-backward with M-C-r IRETi.

13.5 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and the
rest are ordinary. An ordinary character is a simple regular expression that matches that
character and nothing else. The special characters are *.”, **’, 4+’ 2’ <[’ 1"~ ‘$’, and
‘\’; no new special characters will be defined in the future. Any other character appearing
in a regular expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘f’ and no other string. (It does not match the string
‘ff’.) Likewise, ‘0’ is a regular expression that matches only ‘o’.

Any two regular expressions a and b can be concatenated. The result is a regular
expression that matches a string if a matches some amount of the beginning of that string
and b matches the rest of the string.

100 XEmacs User’s Manual

As a simple example, we can concatenate the regular expressions ‘f” and ‘o’ to get the
regular expression ‘fo’, which matches only the string ‘fo’. Still trivial. To do something
more powerful, you need to use one of the special characters. Here is a list of them:

. (Period) is a special character that matches any single character except a newline. Using
concatenation, we can make regular expressions like ‘a.b’, which matches any
three-character string that begins with ‘a’ and ends with ‘b’.

is not a construct by itself; it is a quantifying suffix operator that means to
repeat the preceding regular expression as many times as possible. In ‘fox’, the
‘x” applies to the ‘0’, so ‘fo*’ matches one ‘f’ followed by any number of ‘o’s.
The case of zero ‘o’s is allowed: ‘fo*’ does match ‘f’.

‘x" always applies to the smallest possible preceding expression. Thus, ‘fox*’
has a repeating ‘o’, not a repeating ‘fo’.

The matcher processes a ‘*’ construct by matching, immediately, as many rep-
etitions as can be found; it is "greedy". Then it continues with the rest of the
pattern. If that fails, backtracking occurs, discarding some of the matches of
the ‘*’-modified construct in case that makes it possible to match the rest of the
pattern. For example, in matching ‘ca*ar’ against the string ‘caaar’, the ‘ax’
first tries to match all three ‘a’s; but the rest of the pattern is ‘ar’ and there is
only ‘r’ left to match, so this try fails. The next alternative is for ‘a*’ to match
only two ‘a’s. With this choice, the rest of the regexp matches successfully.

Nested repetition operators can be extremely slow if they specify backtracking
loops. For example, it could take hours for the regular expression ‘\ (x+y*\) *a’
to match the sequence ‘XXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxxxz . The slow-
ness is because Emacs must try each imaginable way of grouping the 35 ‘x”’s
before concluding that none of them can work. To make sure your regular
expressions run fast, check nested repetitions carefully.

+ is a quantifying suffix operator similar to ‘*’ except that the preceding expres-
sion must match at least once. It is also "greedy". So, for example, ‘ca+r’
matches the strings ‘car’ and ‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’
matches all three strings.

? is a quantifying suffix operator similar to ‘*’, except that the preceding expres-
sion can match either once or not at all. For example, ‘ca?r’ matches ‘car’ or
‘cr’, but does not match anything else.

? works just like ‘¥’) except that rather than matching the longest match, it
matches the shortest match. ‘*?’ is known as a non-greedy quantifier, a regexp
construct borrowed from Perl.

This construct is very useful for when you want to match the text inside a pair
of delimiters. For instance, ‘/*.*?*/’ will match C comments in a string.
This could not easily be achieved without the use of a non-greedy quantifier.

This construct has not been available prior to XEmacs 20.4. It is not available
in FSF Emacs.

+7? is the non-greedy version of ‘+’.

?7? is the non-greedy version of ‘?’.

Chapter 13: Searching and Replacement 101

\{n,m\}

serves as an interval quantifier, analogous to ‘*’ or ‘+’; but specifies that the
expression must match at least n times, but no more than m times. This syntax
is supported by most Unix regexp utilities, and has been introduced to XEmacs
for the version 20.3.

Unfortunately, the non-greedy version of this quantifier does not exist currently,
although it does in Perl.

‘[’ begins a character set which is terminated by a ‘]1’. In the simplest case, the
characters between the two brackets form the set. Thus, ‘[ad]’ matches either
one ‘a’ or one ‘d’, and ‘[ad]l*’ matches any string composed of just ‘a’s and
‘d’s (including the empty string), from which it follows that ‘c [ad]*r’ matches
‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

The usual regular expression special characters are not special inside a character
set. A completely different set of special characters exists inside character sets:
L:I’7 [a:nd L'~7‘

‘=7 is used for ranges of characters. To write a range, write two characters with a
‘=" between them. Thus, ‘[a-z]’ matches any lower case letter. Ranges may be
intermixed freely with individual characters, as in ‘[a-z$%.]’, which matches
any lower case letter or ‘$’, ‘%’, or a period.

To include a ‘]’ in a character set, make it the first character. For example,
‘[Jal’ matches ‘]” or ‘a’. To include a ‘-’, write ‘=’ as the first character in
the set, or put it immediately after a range. (You can replace one individual
character ¢ with the range ‘c-C’ to make a place to put the ‘-’.) There is no
way to write a set containing just ‘-" and ‘]’.

To include ‘~7 in a set, put it anywhere but at the beginning of the set.

‘[*” begins a complement character set which matches any character except
the ones specified. Thus, ‘[Ta-z0-9A-Z]" matches all characters except letters
and digits.

(e~

is not special in a character set unless it is the first character. The character
following the ‘~’ is treated as if it were first (thus, ‘=" and ‘]’ are not special
there).

Note that a complement character set can match a newline, unless newline is
mentioned as one of the characters not to match.

is a special character that matches the empty string, but only at the beginning
of a line in the text being matched. Otherwise it fails to match anything. Thus,
‘~foo’ matches a ‘foo’ that occurs at the beginning of a line.

When matching a string instead of a buffer, ‘~’ matches at the beginning of the
string or after a newline character ‘\n’.

is similar to ‘~” but matches only at the end of a line. Thus, ‘x+$” matches a
string of one ‘x’ or more at the end of a line.

When matching a string instead of a buffer, ‘$” matches at the end of the string

or before a newline character ‘\n’.

has two functions: it quotes the special characters (including ‘\’), and it intro-
duces additional special constructs.

102 XEmacs User’s Manual

Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches
only ‘$’, and ‘\ [’ is a regular expression that matches only ‘[’, and so on.

Please note: For historical compatibility, special characters are treated as ordinary ones
if they are in contexts where their special meanings make no sense. For example, ‘*foo’
treats ‘*’ as ordinary since there is no preceding expression on which the ‘*’ can act. It is
poor practice to depend on this behavior; quote the special character anyway, regardless of
where it appears.

For the most part, ‘\’ followed by any character matches only that character. However,
there are several exceptions: characters that, when preceded by ‘\’, are special constructs.
Such characters are always ordinary when encountered on their own. Here is a table of ‘\’
constructs:

\ | specifies an alternative. Two regular expressions @ and b with ‘\ |’ in between
form an expression that matches anything that either a or b matches.
Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

‘\|” applies to the largest possible surrounding expressions. Only a surrounding
‘N(C ... \)’ grouping can limit the grouping power of ‘\|’.

Full backtracking capability exists to handle multiple uses of ‘\|’.

\(...\) is a grouping construct that serves three purposes:

1. To enclose a set of ‘\|’ alternatives for other operations. Thus,
‘\ (foo\ |bar\)x’ matches either ‘foox’ or ‘barx’.

2. To enclose an expression for a suffix operator such as ‘*’ to act on. Thus,
‘ba\ (na\)*’ matches ‘bananana’, etc., with any (zero or more) number of
‘na’ strings.

3. To record a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature that happens to be assigned as a second meaning to the
same ‘\(... \)’ construct because there is no conflict in practice between the
two meanings. Here is an explanation of this feature:

\digit matches the same text that matched the digitth occurrence of a ‘\(... \)’
construct.
In other words, after the end of a ‘\(... \)’ construct. the matcher remembers

the beginning and end of the text matched by that construct. Then, later on
in the regular expression, you can use ‘\’ followed by digit to match that same
text, whatever it may have been.

The strings matching the first nine ‘\'(... \)’ constructs appearing in a reg-
ular expression are assigned numbers 1 through 9 in the order that the open
parentheses appear in the regular expression. So you can use ‘\1’ through ‘\9’
to refer to the text matched by the corresponding ‘\(... \)’ constructs.

For example, ‘\ (.*\)\1" matches any newline-free string that is composed of
two identical halves. The ‘\(.*\)’ matches the first half, which may be any-
thing, but the ‘\1’ that follows must match the same exact text.

Chapter 13: Searching and Replacement 103

\(?: .. \)

\w

\W

\scode

\Scode

is called a shy grouping operator, and it is used just like ‘\(... \)’, except
that it does not cause the matched substring to be recorded for future reference.

This is useful when you need a lot of grouping ‘\(... \)’ constructs, but only
want to remember one or two — or if you have more than nine groupings and
need to use backreferences to refer to the groupings at the end.

Using ‘\(?: ... \)’ rather than ‘\(... \)’ when you don’t need the captured
substrings ought to speed up your programs some, since it shortens the code
path followed by the regular expression engine, as well as the amount of memory
allocation and string copying it must do. The actual performance gain to be
observed has not been measured or quantified as of this writing.

The shy grouping operator has been borrowed from Perl, and has not been
available prior to XEmacs 20.3, nor is it available in FSF Emacs.

matches any word-constituent character. The editor syntax table determines
which characters these are. See Section 29.6 [Syntax], page 298.

matches any character that is not a word constituent.

matches any character whose syntax is code Here code is a character that
represents a syntax code: thus, ‘w’ for word constituent, ‘=’ for whitespace,
‘(" for open parenthesis, etc. See Section 29.6 [Syntax|, page 298, for a list of
syntax codes and the characters that stand for them.

matches any character whose syntax is not code

The following regular expression constructs match the empty string—that is, they don’t
use up any characters—but whether they match depends on the context.

\

\b

\B
\<

\>

matches the empty string, but only at the beginning of the buffer or string
being matched against.

matches the empty string, but only at the end of the buffer or string being
matched against.

matches the empty string, but only at point. (This construct is not defined
when matching against a string.)

matches the empty string, but only at the beginning or end of a word. Thus,
“\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.

matches the empty string, but not at the beginning or end of a word.
matches the empty string, but only at the beginning of a word.
matches the empty string, but only at the end of a word.

Here is a complicated regexp used by Emacs to recognize the end of a sentence together
with any whitespace that follows. It is given in Lisp syntax to enable you to distinguish the
spaces from the tab characters. In Lisp syntax, the string constant begins and ends with a
double-quote. ‘\"’ stands for a double-quote as part of the regexp, ‘\\’ for a backslash as
part of the regexp, ‘\t’ for a tab and ‘\n’ for a newline.

104 XEmacs User’s Manual

CL2TON") TN NN T A\D [\t\n] "

This regexp contains four parts: a character set matching period, ‘?’ or ‘!’; a character set
matching close-brackets, quotes or parentheses, repeated any number of times; an alterna-
tive in backslash-parentheses that matches end-of-line, a tab or two spaces; and a character
set matching whitespace characters, repeated any number of times.

13.6 Searching and Case

All searches in Emacs normally ignore the case of the text they are searching through; if
you specify searching for ‘FO0’, ‘Foo’ and ‘foo’ are also considered a match. Regexps, and
in particular character sets, are included: ‘[aB]’ matches ‘a’ or ‘A’ or ‘b’ or ‘B’.

If you want a case-sensitive search, set the variable case-fold-search to nil. Then
all letters must match exactly, including case. case-fold-search is a per-buffer variable;
altering it affects only the current buffer, but there is a default value which you can change
as well. See Section 29.3.4 [Locals], page 288. You can also use Case Sensitive Searclrom
the Options menu on your screen.

13.7 Replacement Commands

Global search-and-replace operations are not needed as often in Emacs as they are in other
editors, but they are available. In addition to the simple replace-string command which
is like that found in most editors, there is a query-replace command which asks you, for
each occurrence of a pattern, whether to replace it.

The replace commands all replace one string (or regexp) with one replacement string. It
is possible to perform several replacements in parallel using the command expand-region-
abbrevs. See Section 24.2 [Expanding Abbrevs], page 230.

13.7.1 Unconditional Replacement

M-x replace-string RET string IRETI newstring IRET
Replace every occurrence of string with newstring.

M-x replace-regexp RETI regexp HRETI newstring MRET
Replace every match for regexp with newstring.

To replace every instance of ‘foo’ after point with ‘bar’, use the command M-x replace-
string with the two arguments ‘foo’ and ‘bar’. Replacement occurs only after point: if
you want to cover the whole buffer you must go to the beginning first. By default, all
occurrences up to the end of the buffer are replaced. To limit replacement to part of the
buffer, narrow to that part of the buffer before doing the replacement (see Section 28.3
[Narrowing], page 276).

When replace-string exits, point is left at the last occurrence replaced. The value
of point when the replace-string command was issued is remembered on the mark ring;
C-u C-sPCi moves back there.

A numeric argument restricts replacement to matches that are surrounded by word
boundaries.

Chapter 13: Searching and Replacement 105

13.7.2 Regexp Replacement

replace-string replaces exact matches for a single string. The similar command replace-
regexp replaces any match for a specified pattern.

In replace-regexp, the newstring need not be constant. It can refer to all or part of
what is matched by the regexp ‘\&’ in newstring stands for the entire text being replaced.
‘\d’ in newstring, where d is a digit, stands for whatever matched the d’th parenthesized
grouping in regexp For example,

M-x replace-regexp IRETI c[ad]+r MRET \&-safe MRET
would replace (for example) ‘cadr’ with ‘cadr-safe’ and ‘cddr’ with ‘cddr-safe’.
M-x replace-regexp MRETI \(c[ad]+r\)-safe RETI \1 IRETi

would perform exactly the opposite replacements. To include a ‘\’ in the text to replace
with, you must give “\\’.

13.7.3 Replace Commands and Case

If the arguments to a replace command are in lower case, the command preserves case when
it makes a replacement. Thus, the following command:

M-x replace-string MRETI foo IRETI bar IRETI

replaces a lower-case ‘foo’ with a lower case ‘bar’, ‘FO0’ with ‘BAR’, and ‘Foo’ with ‘Bar’.
If upper-case letters are used in the second argument, they remain upper-case every time
that argument is inserted. If upper-case letters are used in the first argument, the second
argument is always substituted exactly as given, with no case conversion. Likewise, if the
variable case-replace is set to nil, replacement is done without case conversion. If case-
fold-search is set to nil, case is significant in matching occurrences of ‘foo’ to replace;
also, case conversion of the replacement string is not done.

13.7.4 Query Replace

M-% string MRETi newstring HRETi
M-x query-replace IRET string RETI newstring RET
Replace some occurrences of string with newstring.

M-x query-replace-regexp IRETI regexp IRETI newstring HRETI
Replace some matches for regexp with newstring.

If you want to change only some of the occurrences of ‘foo’ to ‘bar’, not all of them,
you can use query-replace instead of M-% This command finds occurrences of ‘foo’ one
by one, displays each occurrence, and asks you whether to replace it. A numeric argument
to query-replace tells it to consider only occurrences that are bounded by word-delimiter
characters.

Aside from querying, query-replace works just like replace-string, and query-
replace-regexp works just like replace-regexp.

The things you can type when you are shown an occurrence of string or a match for
regexp are:
tsPCi to replace the occurrence with newstring. This preserves case, just like
replace-string, provided case-replace is non-nil, as it normally is.

fDELI to skip to the next occurrence without replacing this one.

106 XEmacs User’s Manual

, (Comma)
to replace this occurrence and display the result. You are then prompted for
another input character. However, since the replacement has already been
made, IDEL and (PG are equivalent. At this point, you can type C-r (see
below) to alter the replaced text. To undo the replacement, you can type C-X
u. This exits the query-replace. If you want to do further replacement you
must use C-x ESCto restart (see Section 6.5 [Repetition], page 61).

HESCi to exit without doing any more replacements.
. (Period) to replace this occurrence and then exit.
! to replace all remaining occurrences without asking again.

to go back to the location of the previous occurrence (or what used to be an
occurrence), in case you changed it by mistake. This works by popping the mark
ring. Ounly one ~ in a row is allowed, because only one previous replacement
location is kept during query-replace.

C-r to enter a recursive editing level, in case the occurrence needs to be edited rather
than just replaced with newstring. When you are done, exit the recursive editing
level with C-M-c and the next occurrence will be displayed. See Section 28.5
[Recursive Edit], page 277.

C-w to delete the occurrence, and then enter a recursive editing level as in C-r.
Use the recursive edit to insert text to replace the deleted occurrence of string.
When done, exit the recursive editing level with C-M-c and the next occurrence
will be displayed.

C-l to redisplay the screen and then give another answer.
C-h to display a message summarizing these options, then give another answer.

If you type any other character, Emacs exits the query-replace, and executes the
character as a command. To restart the query-replace, use C-X IESCi, which repeats
the query-replace because it used the minibuffer to read its arguments. See Section 6.5
[Repetition], page 61.

13.8 Other Search-and-Loop Commands

Here are some other commands that find matches for a regular expression. They all operate
from point to the end of the buffer.

M-x occur Print each line that follows point and contains a match for the specified regexp.
A numeric argument specifies the number of context lines to print before and
after each matching line; the default is none.

The buffer ‘*0Occur*’ containing the output serves as a menu for finding oc-
currences in their original context. Find an occurrence as listed in ‘*0ccurx*’,
position point there, and type C-c C-c; this switches to the buffer that was
searched and moves point to the original of the same occurrence.

M-x list-matching-lines
Synonym for M-x occur.

Chapter 13: Searching and Replacement 107

M-x count-matches
Print the number of matches following point for the specified regexp.
M-x delete-non-matching-lines

Delete each line that follows point and does not contain a match for the specified
regexp.

M-x delete-matching-lines

Delete each line that follows point and contains a match for the specified regexp.

108 XEmacs User’s Manual

Chapter 14: Commands for Fixing Typos 109

14 Commands for Fixing Typos

This chapter describes commands that are especially useful when you catch a mistake in
your text just after you have made it, or when you change your mind while composing text
on line.

14.1 Killing Your Mistakes

IDELI Delete last character (delete-backward-char).

M-DELI Kill last word (backward-kill-word).

C-x bEL Kill to beginning of sentence (backward-kill-sentence).

The EL character (delete-backward-char) is the most important correction com-
mand. When used among graphic (self-inserting) characters, it can be thought of as can-
celing the last character typed.

When your mistake is longer than a couple of characters, it might be more convenient to
use MHDELI or C-X DELI. MHDELI kills back to the start of the last word, and C-Xx DEL kills
back to the start of the last sentence. C-x IDEL is particularly useful when you are thinking
of what to write as you type it, in case you change your mind about phrasing. M-{DEL
and C-X IDEL save the killed text for C-y and M-y to retrieve. See Section 10.2 [Yanking],
page 79.

MHDEL is often useful even when you have typed only a few characters wrong, if you
know you are confused in your typing and aren’t sure exactly what you typed. At such a
time, you cannot correct with IDELI except by looking at the screen to see what you did. It
requires less thought to kill the whole word and start over.

14.2 Transposing Text

C-t Transpose two characters (transpose-chars).

M-t Transpose two words (transpose-words).

C-M-t Transpose two balanced expressions (transpose-sexps).
C-x C-t Transpose two lines (transpose-lines).

The common error of transposing two adjacent characters can be fixed with the C-t
command (transpose-chars). Normally, C-t transposes the two characters on either side
of point. When given at the end of a line, C-t transposes the last two characters on the
line, rather than transposing the last character of the line with the newline, which would
be useless. If you catch a transposition error right away, you can fix it with just C-t. If
you catch the error later, move the cursor back to between the two transposed characters.
If you transposed a space with the last character of the word before it, the word motion
commands are a good way of getting there. Otherwise, a reverse search (C-r) is often the
best way. See Chapter 13 [Search], page 95.

Meta-t (transpose-words) transposes the word before point with the word after point.
It moves point forward over a word, dragging the word preceding or containing point for-
ward as well. The punctuation characters between the words do not move. For example,
‘FO0, BAR’ transposes into ‘BAR, F00’ rather than ‘BAR FO0O,’ .

110 XEmacs User’s Manual

C-M-t (transpose-sexps) is a similar command for transposing two expressions (see
Section 22.2 [Lists], page 184), and C-x C-t (transpose-lines) exchanges lines. It works
like M-t but in determines the division of the text into syntactic units differently.

A numeric argument to a transpose command serves as a repeat count: it tells the
transpose command to move the character (word, sexp, line) before or containing point
across several other characters (words, sexps, lines). For example, C-u 3 C-t moves the
character before point forward across three other characters. This is equivalent to repeating
C-t three times. C-u - 4 M-t moves the word before point backward across four words. C-u
- C-M-t would cancel the effect of plain C-M-t.

A numeric argument of zero transposes the character (word, sexp, line) ending after
point with the one ending after the mark (otherwise a command with a repeat count of zero
would do nothing).

14.3 Case Conversion

M-- M-I Convert last word to lower case. Note that Meta-- is “Meta-minus.”
M-- M-u Convert last word to all upper case.

M-- M-c Convert last word to lower case with capital initial.

A common error is to type words in the wrong case. Because of this, the word case-
conversion commands M-I, M-u, and M-c do not move the cursor when used with a negative
argument. As soon as you see you have mistyped the last word, you can simply case-convert
it and continue typing. See Section 21.7 [Case], page 181.

14.4 Checking and Correcting Spelling
M-$ Check and correct spelling of word (spell-word).

M-x spell-buffer
Check and correct spelling of each word in the buffer.

M-x spell-region
Check and correct spelling of each word in the region.

M-x spell-string
Check spelling of specified word.

To check the spelling of the word before point, and optionally correct it, use the command
M-$ (spell-word). This command runs an inferior process containing the spell program
to see whether the word is correct English. If it is not, it asks you to edit the word (in the
minibuffer) into a corrected spelling, and then performs a query-replace to substitute the
corrected spelling for the old one throughout the buffer.

If you exit the minibuffer without altering the original spelling, it means you do not
want to do anything to that word. In that case, the query-replace is not done.

M-x spell-buffer checks each word in the buffer the same way that spell-word does,
doing a query-replace for every incorrect word if appropriate.

M-x spell-region is similar to spell-buffer but operates only on the region, not the
entire buffer.

Chapter 14: Commands for Fixing Typos 111

M-x spell-string reads a string as an argument and checks whether that is a correctly
spelled English word. It prints a message giving the answer in the echo area.

112 XEmacs User’s Manual

Chapter 15: File Handling 113

15 File Handling

The basic unit of stored data in Unix is the le. To edit a file, you must tell Emacs to
examine the file and prepare a buffer containing a copy of the file’s text. This is called
visiting the file. Editing commands apply directly to text in the buffer; that is, to the copy
inside Emacs. Your changes appear in the file itself only when you savethe buffer back into
the file.

Emacs is also able to handle “remote files” which are stored on other hosts. Not only
is Emacs somewhat aware of the special issues involved with network file systems, but it
can also use FTP and ssh (or rsh) to make local copies of the files, and refresh them on
the remote host automatically when you save the buffer. The FTP interface is provided
by the standard ‘efs’ package (undefined) [Top], page (undefined). The ssh/rsh interface
is provided by the optional ‘tramp’ package (undefined) [Top|, page (undefined). These
packages attempt to implement all of the operations described below, making remote file
use transparent (except for unavoidable network delays).

In addition to visiting and saving files, Emacs can delete, copy, rename, and append to
files, and operate on file directories.

15.1 File Names

Most Emacs commands that operate on a file require you to specify the file name. (Saving
and reverting are exceptions; the buffer knows which file name to use for them.) File names
are specified in the minibuffer (see Chapter 6 [Minibuffer]|, page 55). Completion is available,
to make it easier to specify long file names. See Section 6.3 [Completion], page 57.

There is always a default le name which is used if you enter an empty argument by
typing just IRETi. Normally the default file name is the name of the file visited in the current
buffer; this makes it easy to operate on that file with any of the Emacs file commands.

The syntax for accessing remote files unfortunately varies depending on the method used.
The syntax for using FTP is ‘/user @remote-host :path-on-remote-host ’. The syntax
for using ssh is ¢/ [user @remote-host]path-on-remote-host .

In both cases the ‘user @ portion is optional (it defaults to your local user name). path-
on-remote-host may use the ‘~’ notation to indicate users home directory on the remote
host. The default file name will reflect the remote host information.

Each buffer has a default directory, normally the same as the directory of the file visited
in that buffer. When Emacs reads a file name, the default directory is used if you do not
specify a directory. If you specify a directory in a relative fashion, with a name that does
not start with a slash, it is interpreted with respect to the default directory. The default
directory of the current buffer is kept in the variable default-directory, which has a
separate value in every buffer. The value of the variable should end with a slash.

For example, if the default file name is ‘/u/rms/gnu/gnu.tasks’ then the default direc-
tory is ‘/u/rms/gnu/’. If you type just ‘foo’, which does not specify a directory, it is short
for ‘/u/rms/gnu/foo’. ‘../.login’ would stand for ‘/u/rms/.login’. ‘new/foo’ would
stand for the filename ‘/u/rms/gnu/new/foo’.

When visiting a remote file via EFS or TRAMP, the remote directory becomes the
default directory (see Section 15.2 [Visiting], page 114) for that buffer, just as a local
directory would.

114 XEmacs User’s Manual

The variable default-directory-alist takes an alist of major modes and their opinions
on default-directory as a Lisp expression to evaluate. A resulting value of nil is ignored
in favor of default-directory.

You can create a new directory with the function make-directory, which takes as an
argument a file name string. The current directory is displayed in the minibuffer when the
function is called; you can delete the old directory name and supply a new directory name.
For example, if the current directory is ‘/u/rms/gnu’, you can delete ‘gnu’ and type ‘oryx’
and IRETI to create ‘/u/rms/oryx’. Removing a directory is similar to creating one. To
remove a directory, use remove-directory; it takes one argument, a file name string.

The command M-X pwdprints the current buffer’s default directory, and the command
M-x cd sets it (to a value read using the minibuffer). A buffer’s default directory changes
only when the cd command is used. A file-visiting buffer’s default directory is initialized to
the directory of the file that is visited there. If a buffer is created with C-x b, its default
directory is copied from that of the buffer that was current at the time.

The default directory name actually appears in the minibuffer when the minibuffer be-
comes active to read a file name. This serves two purposes: it shows you what the default
is, so that you can type a relative file name and know with certainty what it will mean, and
it allows you to edit the default to specify a different directory. To inhibit the insertion of
the default directory, set the variable insert-default-directory to nil.

Note that it is legitimate to type an absolute file name after you enter the minibuffer,
ignoring the presence of the default directory name. The final minibuffer contents may look
invalid, but that is not so. See Section 6.1 [Minibuffer File], page 55.

‘$’ in a file name is used to substitute environment variables. For example, if you have
used the shell command ‘setenv FOO rms/hacks’ to set up an environment variable named
‘FOQ’, then you can use ‘/u/$F00/test.c’ or ‘/u/${F00}/test.c’ as an abbreviation for
‘/u/rms/hacks/test.c’. The environment variable name consists of all the alphanumeric
characters after the ‘$’; alternatively, it may be enclosed in braces after the ‘$’. Note that
the ‘setenv’ command affects Emacs only if done before Emacs is started.

To access a file with ‘$’ in its name, type ‘$$’. This pair is converted to a single ‘$’ at the
same time variable substitution is performed for single ‘¢’. The Lisp function that performs
the substitution is called substitute-in-file-name. The substitution is performed only
on filenames read as such using the minibuffer.

15.2 Visiting Files
C-x Cf Visit a file (find-file).
C-x C-v Visit a different file instead of the one visited last (find-alternate-file).

C-x 4 C-f Visit a file, in another window (find-file-other-window). Don’t change this
window.

C-x 5 C-f Visit a file, in another frame (find-file-other-frame). Don’t change this
window or frame.

Visiting a file means copying its contents into an Emacs buffer so you can edit it. Emacs
creates a new buffer for each file you visit. We say that the buffer is visiting the file
that it was created to hold. Emacs constructs the buffer name from the file name by

Chapter 15: File Handling 115

throwing away the directory and keeping just the file name. For example, a file named
‘/usr/rms/emacs.tex’ is displayed in a buffer named ‘emacs.tex’. If a buffer with that
name exists, a unique name is constructed by appending ‘<2>’, ‘<3>’ and so on, using the
lowest number that makes a name that is not already in use.

Each window’s mode line shows the name of the buffer that is being displayed in that
window, so you can always tell what buffer you are editing.

The changes you make with Emacs are made in the Emacs buffer. They do not take
effect in the file that you visit, or any other permanent place, until you save the buffer.
Saving the buffer means that Emacs writes the current contents of the buffer into its visited
file. See Section 15.3 [Saving], page 116.

If a buffer contains changes that have not been saved, the buffer is said to be modied.
This is important because it implies that some changes will be lost if the buffer is not saved.
The mode line displays two stars near the left margin if the buffer is modified.

To visit a file, use the command C-x C-f (find-file). Follow the command with the
name of the file you wish to visit, terminated by a RETi. If you are using XEmacs under
X, you can also use the Open... command from the File menu bar item.

The file name is read using the minibuffer (see Chapter 6 [Minibuffer], page 55), with
defaulting and completion in the standard manner (see Section 15.1 [File Names|, page 113).
While in the minibuffer, you can abort C-x C-f by typing C-g.

C-x C-f has completed successfully when text appears on the screen and a new buffer
name appears in the mode line. If the specified file does not exist and could not be created
or cannot be read, an error results. The error message is printed in the echo area, and
includes the name of the file that Emacs was trying to visit.

If you visit a file that is already in Emacs, C-x C-f does not make another copy. It
selects the existing buffer containing that file. However, before doing so, it checks that the
file itself has not changed since you visited or saved it last. If the file has changed, Emacs
prints a warning message. See Section 15.3.2 [Simultaneous Editing], page 119.

You can switch to a specific file called out in the current buffer by calling the function
find-this-file. By providing a prefix argument, this function calls filename-at-point
and switches to a buffer visiting the file lename. It creates one if none already exists. You
can use this function to edit the file mentioned in the buffer you are working in or to test if
the file exists. You can do that by using the minibuffer completion after snatching the all
or part of the filename.

If the variable find-file-use-truenames’s value is non-nil, a buffer’s visited filename
will always be traced back to the real file. The filename will never be a symbolic link, and
there will never be a symbolic link anywhere in its directory path. In other words, the
buffer-file-name and buffer-file-truename will be equal.

If the variable find-file-compare-truenames value is non-nil, the find-file com-
mand will check the buffer-file-truename of all visited files when deciding whether a
given file is already in a buffer, instead of just buffer-file-name. If you attempt to visit
another file which is a symbolic link to a file that is already in a buffer, the existing buffer
will be found instead of a newly created one. This works if any component of the pathname
(including a non-terminal component) is a symbolic link as well, but doesn’t work with hard
links (nothing does).

116 XEmacs User’s Manual

If you want to create a file, just visit it. Emacs prints ‘(New File)’ in the echo area,
but in other respects behaves as if you had visited an existing empty file. If you make any
changes and save them, the file is created.

If you visit a nonexistent file unintentionally (because you typed the wrong file name),
use the C-x C-v (find-alternate-file) command to visit the file you wanted. C-x C-v
is similar to C-x C-f, but it kills the current buffer (after first offering to save it if it is
modified). C-x C-v is allowed even if the current buffer is not visiting a file.

If the file you specify is actually a directory, Dired is called on that directory (see
Section 15.9 [Dired], page 131). To inhibit this, set the variable find-file-run-dired to
nil; then it is an error to try to visit a directory.

C-x4f (find-file-other-window) is like C-x C-f except that the buffer containing
the specified file is selected in another window. The window that was selected before C-x
4 f continues to show the same buffer it was already showing. If you use this command
when only one window is being displayed, that window is split in two, with one window
showing the same buffer as before, and the other one showing the newly requested file. See
Chapter 17 [Windows]|, page 139.

C-x 5 C-f (find-file-other-frame) is like C-x C-f except that it creates a new frame
in which the file is displayed.

Use the function find-this-file-other-window to edit a file mentioned in the buffer
you are editing or to test if that file exists. To do this, use the minibuffer completion after
snatching the part or all of the filename. By providing a prefix argument, the function
calls filename-at-point and switches you to a buffer visiting the file lename in another
window. The function creates a buffer if none already exists. This function is similar to
find-file-other-window.

There are two hook variables that allow extensions to modify the operation of visiting
files. Visiting a file that does not exist runs the functions in the list find-file-not-found-
hooks; the value of this variable is expected to be a list of functions which are called one
by one until one of them returns non-nil. Any visiting of a file, whether extant or not,
expects find-file-hooks to contain list of functions and calls them all, one by one. In
both cases the functions receive no arguments. Visiting a nonexistent file runs the find-
file-not-found-hooks first.

15.3 Saving Files

Saving a buffer in Emacs means writing its contents back into the file that was visited in
the buffer.

C-x C-s Save the current buffer in its visited file (save-buffer).
C-xs Save any or all buffers in their visited files (save-some-buffers).
M-~ Forget that the current buffer has been changed (not-modified).

C-x C-w Save the current buffer in a specified file, and record that file as the one visited
in the buffer (write-file).

M-x set-visited-file-name
Change file the name under which the current buffer will be saved.

Chapter 15: File Handling 117

To save a file and make your changes permanent, type C-x C-s (save-buffer). After
saving is finished, C-x C-S prints a message such as:

Wrote /u/rms/gnu/gnu.tasks

If the selected buffer is not modified (no changes have been made in it since the buffer was
created or last saved), Emacs does not save it because it would have no effect. Instead, C-x
C-s prints a message in the echo area saying:

(No changes need to be saved)

The command C-X S (save-some-buffers) can save any or all modified buffers. First it
asks, for each modified buffer, whether to save it. The questions should be answered with
y or n. C-x C-c, the key that kills Emacs, invokes save-some-buffers and therefore asks
the same questions.

If you have changed a buffer and do not want the changes to be saved, you should take
some action to prevent it. Otherwise, you are liable to save it by mistake each time you
use save-some-buffers or a related command. One thing you can do is type M-~ (not-
modified), which removes the indication that the buffer is modified. If you do this, none
of the save commands will believe that the buffer needs to be saved. (‘7 is often used
as a mathematical symbol for ‘not’; thus Meta-~ is ‘not’, metafied.) You could also use
set-visited-file-name (see below) to mark the buffer as visiting a different file name,
not in use for anything important.

You can also undo all the changes made since the file was visited or saved, by reading
the text from the file again. This is called reverting. See Section 15.4 [Reverting], page 121.
Alternatively, you can undo all the changes by repeating the undo command C-x u; but this
only works if you have not made more changes than the undo mechanism can remember.

M-x set-visited-file-name alters the name of the file that the current buffer is visit-
ing. It prompts you for the new file name in the minibuffer. You can also use set-visited-
file-name on a buffer that is not visiting a file. The buffer’s name is changed to correspond
to the file it is now visiting unless the new name is already used by a different buffer; in that
case, the buffer name is not changed. set-visited-file-name does not save the buffer in
the newly visited file; it just alters the records inside Emacs so that it will save the buffer
in that file. It also marks the buffer as “modified” so that C-x C-s will save.

If you wish to mark a buffer as visiting a different file and save it right away, use C-X
C-w (write-file). It is precisely equivalent to set-visited-file-name followed by C-X
C-s. C-x C-s used on a buffer that is not visiting a file has the same effect as C-x C-w that
is, it reads a file name, marks the buffer as visiting that file, and saves it there. The default
file name in a buffer that is not visiting a file is made by combining the buffer name with
the buffer’s default directory.

If Emacs is about to save a file and sees that the date of the latest version on disk
does not match what Emacs last read or wrote, Emacs notifies you of this fact, because it
probably indicates a problem caused by simultaneous editing and requires your immediate
attention. See Section 15.3.2 [Simultaneous Editing], page 119.

If the variable require-final-newline is non-nil, Emacs puts a newline at the end of
any file that doesn’t already end in one, every time a file is saved or written.

Use the hook variable write-file-hooks to implement other ways to write files, and
specify things to be done before files are written. The value of this variable should be a

118 XEmacs User’s Manual

list of Lisp functions. When a file is to be written, the functions in the list are called, one
by one, with no arguments. If one of them returns a non-nil value, Emacs takes this to
mean that the file has been written in some suitable fashion; the rest of the functions are
not called, and normal writing is not done. Use the hook variable after-save-hook to list
all the functions to be called after writing out a buffer to a file.

15.3.1 Backup Files

Because Unix does not provide version numbers in file names, rewriting a file in Unix
automatically destroys all record of what the file used to contain. Thus, saving a file from
Emacs throws away the old contents of the file—or it would, except that Emacs carefully
copies the old contents to another file, called the backup file, before actually saving. (Make
sure that the variable make-backup-files is non-nil. Backup files are not written if this
variable is nil).

At your option, Emacs can keep either a single backup file or a series of numbered backup
files for each file you edit.

Emacs makes a backup for a file only the first time a file is saved from one buffer. No
matter how many times you save a file, its backup file continues to contain the contents from
before the file was visited. Normally this means that the backup file contains the contents
from before the current editing session; however, if you kill the buffer and then visit the file
again, a new backup file is made by the next save.

15.3.1.1 Single or Numbered Backups

If you choose to have a single backup file (the default), the backup file’s name is constructed
by appending ‘~’ to the file name being edited; thus, the backup file for ‘eval.c’is ‘eval.c™’

If you choose to have a series of numbered backup files, backup file names are made by
appending ‘.~ the number, and another ‘~’ to the original file name. Thus, the backup
files of ‘eval.c’” would be called ‘eval.c.”17’, ‘eval.c.”2"’, and so on, through names like
‘eval.c.”2597" and beyond.

If protection stops you from writing backup files under the usual names, the backup file
is written as ‘%backup’”’ in your home directory. Only one such file can exist, so only the
most recently made backup is available.

The choice of single backup or numbered backups is controlled by the variable version-
control. Its possible values are:

t Make numbered backups.

nil Make numbered backups for files that have numbered backups already. Other-
wise, make single backups.

never Never make numbered backups; always make single backups.

version-control may be set locally in an individual buffer to control the making of backups
for that buffer’s file. For example, Rmail mode locally sets version-control to never to
make sure that there is only one backup for an Rmail file. See Section 29.3.4 [Locals],
page 288.

Chapter 15: File Handling 119

15.3.1.2 Automatic Deletion of Backups

To prevent unlimited consumption of disk space, Emacs can delete numbered backup ver-
sions automatically. Generally Emacs keeps the first few backups and the latest few backups,
deleting any in between. This happens every time a new backup is made. The two variables
that control the deletion are kept-old-versions and kept-new-versions. Their values
are, respectively the number of oldest (lowest-numbered) backups to keep and the number
of newest (highest-numbered) ones to keep, each time a new backup is made. The values
are used just after a new backup version is made; that newly made backup is included in
the count in kept-new-versions. By default, both variables are 2.

If delete-old-versions is non-nil, excess middle versions are deleted without notifi-
cation. If it is nil, the default, you are asked whether the excess middle versions should
really be deleted.

You can also use Dired’s . (Period) command to delete old versions. See Section 15.9
[Dired], page 131.

15.3.1.3 Copying vs. Renaming

You can make backup files by copying the old file or by renaming it. This makes a difference
when the old file has multiple names. If you rename the old file into the backup file, the
alternate names become names for the backup file. If you copy the old file instead, the
alternate names remain names for the file that you are editing, and the contents accessed
by those names will be the new contents.

How you make a backup file may also affect the file’s owner and group. If you use
copying, they do not change. If renaming is used, you become the file’s owner, and the
file’s group becomes the default (different operating systems have different defaults for the

group).

Having the owner change is usually a good idea, because then the owner is always
the person who last edited the file. Occasionally there is a file whose owner should not
change. Since most files should change owners, it is a good idea to use local variable lists to
set backup-by-copying-when-mismatch for the special cases where the owner should not
change (see Section 29.3.5 [File Variables], page 289).

Three variables control the choice of renaming or copying. Normally, renaming is done.
If the variable backup-by-copying is non-nil, copying is used. Otherwise, if the variable
backup-by-copying-when-linked is non-nil, copying is done for files that have multiple
names, but renaming may still be done when the file being edited has only one name. If
the variable backup-by-copying-when-mismatch is non-nil, copying is done if renaming
would cause the file’s owner or group to change.

15.3.2 Protection Against Simultaneous Editing

Simultaneous editing occurs when two users visit the same file, both make changes, and
both save their changes. If no one was informed that this was happening, and you saved
first, you would later find that your changes were lost. On some systems, Emacs notices
immediately when the second user starts to change a file already being edited, and issues
a warning. When this is not possible, or if the second user has started to change the file
despite the warning, Emacs checks when the file is saved, and issues a second warning when

120 XEmacs User’s Manual

a user is about to overwrite a file containing another user’s changes. If you are the user
editing the file, you can take corrective action at this point and prevent actual loss of work.

When you make the first modification in an Emacs buffer that is visiting a file, Emacs
records that you have locked the file. (It does this by writing another file in a directory
reserved for this purpose.) The lock is removed when you save the changes. The idea is
that the file is locked whenever the buffer is modified. If you begin to modify the buffer
while the visited file is locked by someone else, this constitutes a collision, and Emacs asks
you what to do. It does this by calling the Lisp function ask-user-about-lock, which you
can redefine to customize what it does. The standard definition of this function asks you a
question and accepts three possible answers:

S Steal the lock. Whoever was already changing the file loses the lock, and you
get the lock.

p Proceed. Go ahead and edit the file despite its being locked by someone else.

q Quit. This causes an error (file-locked) and the modification you were trying

to make in the buffer does not actually take place.

Note that locking works on the basis of a file name; if a file has multiple names, Emacs
does not realize that the two names are the same file and cannot prevent two users from
editing it simultaneously under different names. However, basing locking on names means
that Emacs can interlock the editing of new files that do not really exist until they are
saved.

Some systems are not configured to allow Emacs to make locks. On these systems,
Emacs cannot detect trouble in advance, but it can still detect it in time to prevent you
from overwriting someone else’s changes.

Every time Emacs saves a buffer, it first checks the last-modification date of the existing
file on disk to see that it has not changed since the file was last visited or saved. If the date
does not match, it implies that changes were made in the file in some other way, and these
changes are about to be lost if Emacs actually does save. To prevent this, Emacs prints
a warning message and asks for confirmation before saving. Occasionally you will know
why the file was changed and know that it does not matter; then you can answer yes and
proceed. Otherwise, you should cancel the save with C-g and investigate the situation.

The first thing you should do when notified that simultaneous editing has already
taken place is to list the directory with C-u C-x C-d (see Section 15.7 [Directory Listing],
page 130). This will show the file’s current author. You should attempt to contact that
person and ask him not to continue editing. Often the next step is to save the contents of
your Emacs buffer under a different name, and use diff to compare the two files.

Simultaneous editing checks are also made when you visit a file that is already visited
with C-x C-f and when you start to modify a file. This is not strictly necessary, but it is
useful to find out about such a problem as early as possible, when corrective action takes
less work.

Another way to protect your file is to set the read, write, and executable permissions for
the file. Use the function set-default-file-modes to set the UNIX umask value to the
nmask argument. The umask value is the default protection mode for new files.

Chapter 15: File Handling 121

15.4 Reverting a Buffer

If you have made extensive changes to a file and then change your mind about them, you
can get rid of all changes by reading in the previous version of the file. To do this, use M-x
revert-buffer | which operates on the current buffer. Since reverting a buffer can result
in very extensive changes, you must confirm it with yes.

If the current buffer has been auto-saved more recently than it has been saved explicitly,
revert-buffer offers to read the auto save file instead of the visited file (see Section 15.5
[Auto Save], page 121). Emacs asks you about the auto-save file before the request for
confirmation of the revert-buffer operation, and demands y or n as an answer. If you
have started to type yes for confirmation without realizing that the auto-save question was
going to be asked, the y will answer that question, but the es will not be valid confirmation.
This gives you a chance to cancel the operation with C-g and try again with the answers
you really intend.

revert-buffer keeps point at the same distance (measured in characters) from the
beginning of the file. If the file was edited only slightly, you will be at approximately the
same piece of text after reverting as before. If you have made more extensive changes, the
value of point in the old file may bring you to a totally different piece of text than your last
editing point.

A buffer reverted from its visited file is marked “not modified” until you make a change.

Some kinds of buffers whose contents reflect data bases other than files, such as Dired
buffers, can also be reverted. For them, reverting means recalculating their contents from
the appropriate data. Buffers created randomly with C-x b cannot be reverted; revert-
buffer reports an error when asked to do so.

15.5 Auto-Saving: Protection Against Disasters

Emacs saves all the visited files from time to time (based on counting your keystrokes)
without being asked. This is called auto-saving It prevents you from losing more than a
limited amount of work if the system crashes.

When Emacs determines it is time for auto-saving, each buffer is considered and is
auto-saved if auto-saving is turned on for it and it has changed since the last time it was
auto-saved. If any auto-saving is done, the message ‘Auto-saving. ..’ is displayed in the
echo area until auto-saving is finished. Errors occurring during auto-saving are caught so
that they do not interfere with the execution of commands you have been typing.

15.5.1 Auto-Save Files

Auto-saving does not normally write to the files you visited, because it can be undesirable to
save a program that is in an inconsistent state when you have made only half of a planned
change. Instead, auto-saving is done in a different file called the auto-save le, and the
visited file is changed only when you save explicitly, for example, with C-x C-s.

Normally, the name of the auto-save file is generated by appending ‘#’ to the front and
back of the visited file name. Thus, a buffer visiting file ‘foo.c’ would be auto-saved in
a file ‘#foo.c#’. Most buffers that are not visiting files are auto-saved only if you request
it explicitly; when they are auto-saved, the auto-save file name is generated by appending
‘#%° to the front and ‘#’ to the back of buffer name. For example, the ‘“*mail*’ buffer in

122 XEmacs User’s Manual

which you compose messages to be sent is auto-saved in a file named ‘#%*mailx#’. Names
of auto-save files are generated this way unless you customize the functions make-auto-
save-file-name and auto-save-file-name-p to do something different. The file name to
be used for auto-saving a buffer is calculated at the time auto-saving is turned on in that
buffer.

If you want auto-saving to be done in the visited file, set the variable auto-save-
visited-file-name to be non-nil. In this mode, there is really no difference between
auto-saving and explicit saving.

Emacs deletes a buffer’s auto-save file when you explicitly save the buffer. To inhibit the
deletion, set the variable delete-auto-save-files to nil. Changing the visited file name
with C-Xx C-wor set-visited-file-name renames any auto-save file to correspond to the
new visited name.

15.5.2 Controlling Auto-Saving

Each time you visit a file, auto-saving is turned on for that file’s buffer if the variable
auto-save-default is non-nil (but not in batch mode; see Chapter 3 [Entering Emacs],
page 35). The default for this variable is t, so Emacs auto-saves buffers that visit files by
default. You can use the command M-X auto-save-mode to turn auto-saving for a buffer on
or off. Like other minor mode commands, M-X auto-save-mode turns auto-saving on with
a positive argument, off with a zero or negative argument; with no argument, it toggles.

Emacs performs auto-saving periodically based on counting how many characters you
have typed since the last time auto-saving happened. The variable auto-save-interval
specifies the number of characters between auto-saves. By default, it is 300. Emacs also
auto-saves whenever you call the function do-auto-save.

Emacs also does auto-saving whenever it gets a fatal error. This includes killing the
Emacs job with a shell command such as kill -emacs, or disconnecting a phone line or
network connection.

You can set the number of seconds of idle time before an auto-save is done. Setting
the value of the variable auto-save-timeout to zero or nil will disable auto-saving due to
idleness.

The actual amount of idle time between auto-saves is logarithmically related to the size
of the current buffer. This variable is the number of seconds after which an auto-save will
happen when the current buffer is 50k or less; the timeout will be 2 1/4 times this in a 200k
buffer, 3 3/4 times this in a 1000k buffer, and 4 1/2 times this in a 2000k buffer.

For this variable to have any effect, you must do (require ’timer).

15.5.3 Recovering Data from Auto-Saves

If you want to use the contents of an auto-save file to recover from a loss of data, use
the command M-x recover-file RET file RETi. Emacs visits le and then (after your
confirmation) restores the contents from the auto-save file ‘#file #’. You can then save
the file with C-x C-s to put the recovered text into le itself. For example, to recover file
‘foo.c’ from its auto-save file ‘#foo.c#’, do:

M-x recover-file MRETI foo.c MRETI
C-x C-s

Chapter 15: File Handling 123

Before asking for confirmation, M-x recover-file displays a directory listing describing
the specified file and the auto-save file, so you can compare their sizes and dates. If the
auto-save file is older, M-x recover-file does not offer to read it.

Auto-saving is disabled by M-x recover-file because using this command implies that
the auto-save file contains valuable data from a past session. If you save the data in the
visited file and then go on to make new changes, turn auto-saving back on with M-x auto-
save-mode

15.6 Version Control

Version control systems are packages that can record multiple versions of a source file,
usually storing the unchanged parts of the file just once. Version control systems also
record history information such as the creation time of each version, who created it, and a
description of what was changed in that version.

The GNU project recommends the version control system known as RCS, which is free
software and available from the Free Software Foundation. Emacs supports use of either
RCS or SCCS (a proprietary, but widely used, version control system that is not quite
as powerful as RCS) through a facility called VC. The same Emacs commands work with
either RCS or SCCS, so you hardly have to know which one of them you are using.

15.6.1 Concepts of Version Control

When a file is under version control, we also say that it is registeredin the version control
system. Fach registered file has a corresponding master le which represents the file’s
present state plus its change history, so that you can reconstruct from it either the current
version or any specified earlier version. Usually the master file also records a log entry for
each version describing what was changed in that version.

The file that is maintained under version control is sometimes called the work le cor-
responding to its master file.

To examine a file, you check it out. This extracts a version of the source file (typically,
the most recent) from the master file. If you want to edit the file, you must check it out
locked Only one user can do this at a time for any given source file. (This kind of locking
is completely unrelated to the locking that Emacs uses to detect simultaneous editing of a

file.)

When you are done with your editing, you must check in the new version. This records
the new version in the master file, and unlocks the source file so that other people can lock
it and thus modify it.

Checkin and checkout are the basic operations of version control. You can do both of
them with a single Emacs command: C-x C-q (vc-toggle-read-only).

A snapshotis a coherent collection of versions of the various files that make up a program.
See Section 15.6.9 [Snapshots|, page 128.

15.6.2 Editing with Version Control

When you visit a file that is maintained using version control, the mode line displays ‘RCS’
or ‘SCCS’ to inform you that version control is in use, and also (in case you care) which
low-level system the file is actually stored in. Normally, such a source file is read-only, and

124 XEmacs User’s Manual

the mode line indicates this with ‘%%’. With RCS, the mode line also indicates the number
of the head version, which is normally also the version you are looking at.

These are the commands for editing a file maintained with version control:
C-x Cq Check the visited file in or out.
Cxvu Revert the buffer and the file to the last checked in version.

C-xvec Remove the last-entered change from the master for the visited file. This undoes
your last check-in.

C-xvi Register the visited file in version control.

(C-x v is the prefix key for version control commands; all of these commands except for C-x
C-q start with C-x v.)

When you want to modify a file maintained with version control, type C-x C-q (vc-
toggle-read-only). This checks outthe file, and tells RCS or SCCS to lock the file. This
means making the file writable for you (but not for anyone else).

When you are finished editing the file, type C-x C-q again. When used on a file that
is checked out, this command checks the file in. But check-in does not start immediately;
first, you must enter the log entry—a description of the changes in the new version. C-X
C-q pops up a buffer for you to enter this in. When you are finished typing in the log entry,
type C-c C-c to terminate it; this is when actual check-in takes place.

Once you have checked in your changes, the file is unlocked, so that other users can lock
it and modify it.

Emacs does not save backup files for source files that are maintained with version control.
If you want to make backup files despite version countrol, set the variable vc-make-backup-
files to a non-nil value.

Normally the work file exists all the time, whether it is locked or not. If you set vc-
keep-workfiles to nil, then checking in a new version with C-x C-q deletes the work file;
but any attempt to visit the file with Emacs creates it again.

It is not impossible to lock a file that someone else has locked. If you try to check out a
file that is locked, C-x C-g asks you whether you want to “steal the lock.” If you say yes,
the file becomes locked by you, but a message is sent to the person who had formerly locked
the file, to inform him of what has happened. The mode line indicates that a file is locked
by someone else by displaying the login name of that person, before the version number.

If you want to discard your current set of changes and revert to the last version checked
in, use C-X VU (vc-revert-buffer). This cancels your last check-out, leaving the file
unlocked. If you want to make a different set of changes, you must first check the file out
again. C-X V U requires confirmation, unless it sees that you haven’t made any changes since
the last checked-in version.

C-x v U is also the command to use if you lock a file and then don’t actually change it.

You can cancel a change after checking it in, with C-x v ¢ (vc-cancel-version). This
command discards all record of the most recent checked in version, so be careful about
using it. It requires confirmation with yes. By default, C-x v ¢ reverts your workfile and
buffer to the previous version (the one that precedes the version that is deleted), but you
can prevent the reversion by giving the command a prefix argument. Then the buffer does
not change.

Chapter 15: File Handling 125

This command with a prefix argument is useful when you have checked in a change and
then discover a trivial error in it; you can cancel the erroneous check-in, fix the error, and
repeat the check-in.

Be careful when invoking C-X v C, as it is easy to throw away a lot of work with it. To
help you be careful, this command always requires confirmation with ‘yes’.

You can register the visited file for version control using C-x Vi (vc-register). If the
variable vc-default-back-end is non-nil, it specifies which version control system to use;
otherwise, this uses RCS if it is installed on your system and SCCS if not. After C-x v i ,
the file is unlocked and read-only. Type C-X C-q if you wish to edit it.

By default, the initial version number is 1.1. If you want to use a different number, give
C-x Vi a prefix argument; then it reads the initial version number using the minibuffer.

If ve-initial-comment is non-nil, C-X Vi reads an initial comment (much like a log
entry) to describe the purpose of this source file.

To specify the version number for a subsequent checkin, use the command C-u C-x v v.
C-Xx VvV (vc-next-action) is the command that C-x C-q uses to do the “real work” when
the visited file uses version control. When used for checkin, and given a prefix argument, it
reads the version number with the minibuffer.

15.6.3 Variables A ecting Check-in and Check-out

If vc-suppress-confirm is non-nil, then C-x C-q and C-X Vi can save the current buffer
without asking, and C-X v u also operates without asking for confirmation. (This variable
does not affect C-x v c; that is so drastic that it should always ask for confirmation.)

VC mode does much of its work by running the shell commands for RCS and SCCS. If
vc-command-messages is non-nil, VO displays messages to indicate which shell commands
it runs, and additional messages when the commands finish.

Normally, VC assumes that it can deduce the locked/unlocked state of files by looking at
the file permissions of the work file; this is fast. However, if the ‘RCS’ or ‘SCCS’ subdirectory
is actually a symbolic link, then VC does not trust the file permissions to reflect this status.

You can specify the criterion for whether to trust the file permissions by setting the vari-
able ve-mistrust-permissions. Its value may be t (always mistrust the file permissions
and check the master file), nil (always trust the file permissions), or a function of one argu-
ment which makes the decision. The argument is the directory name of the ‘RCS’ or ‘SCCS’
subdirectory. A non-nil value from the function says to mistrust the file permissions.

If you find that the file permissions of work files are changed erroneously, set vc-
mistrust-permissions to t. Then VC always checks the master file to determine the
file’s status.

You can specify additional directories to search for version control programs by setting
the variable vc-path. These directories are searched before the usual search path. The
proper result usually happens automatically.

15.6.4 Log Entries

When you're editing an initial comment or log entry for inclusion in a master file, finish
your entry by typing C-c C-c.

126 XEmacs User’s Manual

C-c C-c Finish the comment edit normally (vc-finish-logentry). This finishes check-
in.

To abort check-in, just don’t type C-c C-c in that buffer. You can switch buffers and
do other editing. As long as you don’t try to check in another file, the entry you were
editing remains in its buffer, and you can go back to that buffer at any time to complete
the check-in.

If you change several source files for the same reason, it is often convenient to specify
the same log entry for many of the files. To do this, use the history of previous log entries.
The commands M-n, M-p, M-s and M-r for doing this work just like the minibuffer history
commands (except that these versions are used outside the minibuffer).

Each time you check in a file, the log entry buffer is put into VC Log mode, which
involves running two hooks: text-mode-hook and vc-log-mode-hook.

15.6.5 Change Logs and VC

If you use RCS for a program and also maintain a change log file for it (see Section 22.10
[Change Log], page 194), you can generate change log entries automatically from the version
control log entries:

C-xva Visit the current directory’s change log file and create new entries for ver-
sions checked in since the most recent entry in the change log file (vc-update-
change-log).

This command works with RCS only; it does not work with SCCS.

For example, suppose the first line of ‘ChangeLog’ is dated 10 April 1992, and that the
only check-in since then was by Nathaniel Bowditch to ‘rcs2log’ on 8 May 1992 with log
text ‘Ignore log messages that start with ‘#’.’. Then C-X v a visits ‘ChangeLog’ and
inserts text like this:

Fri May 8 21:45:00 1992 Nathaniel Bowditch (nat@apn.org)

* rcs2log: Ignore log messages that start with “#'.
You can then edit the new change log entry further as you wish.

Normally, the log entry for file ‘foo’ is displayed as ‘* foo: text of log entry ’. The
“:7 after ‘foo’ is omitted if the text of the log entry starts with ‘(functionname): ’. For
example, if the log entry for ‘vc.el’ is ‘(vc-do-command) : Check call-process status.’,
then the text in ‘ChangeLog’ looks like this:

Wed May 6 10:53:00 1992 Nathaniel Bowditch (nat@apn.org)

* vc.el (ve-do-command): Check call-process status.

When C-x v a adds several change log entries at once, it groups related log entries
together if they all are checked in by the same author at nearly the same time. If the log
entries for several such files all have the same text, it coalesces them into a single entry. For
example, suppose the most recent checkins have the following log entries:

For ‘vc.texinfo’:

Fix expansion typos.
For ‘vc.el’:

Don’t call expand-file-name.
For ‘vc-hooks.el’:

Chapter 15: File Handling 127

Don’t call expand-file-name.
They appear like this in ‘ChangeLog’:
Wed Apr 1 08:57:59 1992 Nathaniel Bowditch (nat@apn.org)

* vc.texinfo: Fix expansion typos.

* vc.el, vc-hooks.el: Don't call expand-file-name.

Normally, C-x v a separates log entries by a blank line, but you can mark several related
log entries to be clumped together (without an intervening blank line) by starting the text
of each related log entry with a label of the form ‘{clumpnam& ’. The label itself is not
copied to ‘ChangeLog’. For example, suppose the log entries are:

For ‘vc.texinfo’:

{expand} Fix expansion typos.
For ‘vc.el’:

{expand} Don’t call expand-file-name.
For ‘vc-hooks.el’:

{expand} Don’t call expand-file-name.

Then the text in ‘ChangeLog’ looks like this:
Wed Apr 1 08:57:59 1992 Nathaniel Bowditch (nat@apn.org)

* vc.texinfo: Fix expansion typos.
* vc.el, vc-hooks.el: Don't call expand-file-name.
A log entry whose text begins with ‘#’ is not copied to ‘ChangeLog’. For example, if you
merely fix some misspellings in comments, you can log the change with an entry beginning
with ‘#” to avoid putting such trivia into ‘ChangeLog’.

15.6.6 Examining And Comparing Old Versions

C-x v ~ version |RETI
Examine version version of the visited file, in a buffer of its own (vc-version-
other-window).

C-xv= Compare the current buffer contents with the latest checked-in version of the
file.

C-u C-x v =file IRETI oldvers RETI newvers RETI
Compare the specified two versions of le .

You can examine any version of a file by first visiting it, and then using C-x v ~ version
IRETi (vc-version-other-window). This puts the text of version version in a file named
‘filename .~version ~’, then visits it in a separate window.

To compare two versions of a file, use the command C-x v = (ve-diff).

Plain C-x v = compares the current buffer contents (saving them in the file if necessary)
with the last checked-in version of the file. With a prefix argument, C-x v = reads a file
name and two version numbers, then compares those versions of the specified file.

If you supply a directory name instead of the name of a work file, this command compares
the two specified versions of all registered files in that directory and its subdirectories. You
can also specify a snapshot name (see Section 15.6.9 [Snapshots], page 128) instead of one
or both version numbers.

128 XEmacs User’s Manual

You can specify a checked-in version by its number; you can specify the most recent
checked-in version with an empty version number.

This command works by running the vediff utility, getting the options from the variable
diff-switches. It displays the output in a special buffer in another window. Unlike the M-
x diff command, C-x v = does not try to find the changes in the old and new versions. This
is because one or both versions normally do not exist as files. They exist only in the records
of the master file. See Section 15.8 [Comparing Files], page 131, for more information about
M-x diff .

15.6.7 VC Status Commands

To view the detailed version control status and history of a file, type C-x v | (vc-print-
log). It displays the history of changes to the current file, including the text of the log
entries. The output appears in a separate window.

When you are working on a large program, it’s often useful to find all the files that are
currently locked, or all the files maintained in version control at all. You can use C-X v
d (vc-directory) to show all the locked files in or beneath the current directory. This
includes all files that are locked by any user. C-u C-x v d lists all files in or beneath the
current directory that are maintained with version control.

The list of files is displayed as a buffer that uses an augmented Dired mode. The names
of the users locking various files are shown (in parentheses) in place of the owner and group.
All the normal Dired commands work in this buffer. Most interactive VC commands work
also, and apply to the file name on the current line.

The C-x vV command (vc-next-action), when used in the augmented Dired buffer,
operates on all the marked files (or the file on the current line). If it operates on more than
one file, it handles each file according to its current state; thus, it may check out one file
and check in another (because it is already checked out). If it has to check in any files, it
reads a single log entry, then uses that text for all the files being checked in. This can be
convenient for registering or checking in several files at once, as part of the same change.

15.6.8 Renaming VC Work Files and Master Files

When you rename a registered file, you must also rename its master file correspondingly to
get proper results. Use vc-rename-file to rename the source file as you specify, and rename
its master file accordingly. It also updates any snapshots (see Section 15.6.9 [Snapshots],
page 128) that mention the file, so that they use the new name; despite this, the snapshot
thus modified may not completely work (see Section 15.6.9.2 [Snapshot Caveats], page 129).

You cannot use vc-rename-file on a file that is locked by someone else.

15.6.9 Snapshots

A snapshotis a named set of file versions (one for each registered file) that you can treat
as a unit. One important kind of snapshot is a release a (theoretically) stable version of
the system that is ready for distribution to users.

15.6.9.1 Making and Using Snapshots

There are two basic commands for snapshots; one makes a snapshot with a given name, the
other retrieves a named snapshot.

Chapter 15: File Handling 129

C-x v s NAMEeIRETI
Define the last saved versions of every registered file in or under the current
directory as a snapshot named name (vc-create-snapshot).

C-x v r NaMemETi
Check out all registered files at or below the current directory level using what-
ever versions correspond to the snapshot name (vc-retrieve-snapshot).

This command reports an error if any files are locked at or below the cur-
rent directory, without changing anything; this is to avoid overwriting work in
progress.

A snapshot uses a very small amount of resources—just enough to record the list of file
names and which version belongs to the snapshot. Thus, you need not hesitate to create
snapshots whenever they are useful.

You can give a snapshot name as an argument to C-x v = or C-X v ~ (see Section 15.6.6
[Old Versions], page 127). Thus, you can use it to compare a snapshot against the current
files, or two snapshots against each other, or a snapshot against a named version.

15.6.9.2 Snapshot Caveats

VC’s snapshot facilities are modeled on RCS’s named-configuration support. They use
RCS’s native facilities for this, so under VC snapshots made using RCS are visible even
when you bypass VC.

For SCCS, VC implements snapshots itself. The files it uses contain name/file/version-
number triples. These snapshots are visible only through VC.

A snapshot is a set of checked-in versions. So make sure that all the files are checked in
and not locked when you make a snapshot.

File renaming and deletion can create some difficulties with snapshots. This is not a
VC-specific problem, but a general design issue in version control systems that no one has
solved very well yet.

If you rename a registered file, you need to rename its master along with it (the command
vc-rename-file does this automatically). If you are using SCCS, you must also update the
records of the snapshot, to mention the file by its new name (vc-rename-file does this,
too). An old snapshot that refers to a master file that no longer exists under the recorded
name is invalid; VC can no longer retrieve it. It would be beyond the scope of this manual
to explain enough about RCS and SCCS to explain how to update the snapshots by hand.

Using vc-rename-file makes the snapshot remain valid for retrieval, but it does not
solve all problems. For example, some of the files in the program probably refer to others
by name. At the very least, the makefile probably mentions the file that you renamed. If
you retrieve an old snapshot, the renamed file is retrieved under its new name, which is not
the name that the makefile expects. So the program won’t really work as retrieved.

15.6.10 Inserting Version Control Headers

Sometimes it is convenient to put version identification strings directly into working files.
Certain special strings called version headersare replaced in each successive version by the
number of that version.

You can use the C-x v h command (vc-insert-headers) to insert a suitable header
string.

130 XEmacs User’s Manual

C-xvh Insert headers in a file for use with your version-control system.

The default header string is ‘\$Id\$’ for RCS and ‘\%W\%’ for SCCS. (The actual strings
inserted do not have the backslashes in them. They were placed in the Info source file so
that the strings don’t get interpreted as version-control headers when the Info source files
are maintained under version control.) You can specify other headers to insert by setting the
variable vc-header-alist. Its value is a list of elements of the form (program . string)
where program is RCS or SCCS and string is the string to use.

Instead of a single string, you can specify a list of strings; then each string in the list is
inserted as a separate header on a line of its own.

It is often necessary to use “superfluous” backslashes when writing the strings that you
put in this variable. This is to prevent the string in the constant from being interpreted as
a header itself if the Emacs Lisp file containing it is maintained with version control.

Each header is inserted surrounded by tabs, inside comment delimiters, on a new line at
the start of the buffer. Normally the ordinary comment start and comment end strings of
the current mode are used, but for certain modes, there are special comment delimiters for
this purpose; the variable vc-comment-alist specifies them. Each element of this list has
the form (mode starter ender).

The variable vc-static-header-alist specifies further strings to add based on the
name of the buffer. Its value should be a list of elements of the form (regexp . format).
Whenever regexp matches the buffer name, format is inserted as part of the header. A
header line is inserted for each element that matches the buffer name, and for each string
specified by vc-header-alist. The header line is made by processing the string from
vc-header-alist with the format taken from the element. The default value for vc-
static-header-alist is:

CC"\\.cg"
"\n#ifndef lint\nstatic char vcid[l = \"\/s\";\n\
#endif /* lint */\n"))
which specifies insertion of a string of this form:

#ifndef lint
static char vcid[] = "string ";
#endif /* lint */

15.7 Listing a File Directory

Files are organized by Unix into directories. A directory listing is a list of all the files in a
directory. Emacs provides directory listings in brief format (file names only) and verbose
format (sizes, dates, and authors included).
C-x C-d dir-or-pattern
Print a brief directory listing (1ist-directory).
C-u C-x C-d dir-or-pattern
Print a verbose directory listing.
To print a directory listing, use C-x C-d (list-directory). This command prompts in

the minibuffer for a file name which is either a directory to be listed or pattern containing
wildcards for the files to be listed. For example,

Chapter 15: File Handling 131

C-x C-d /u2/emacs/etc MRETI

lists all the files in directory ‘/u2/emacs/etc’. An example of specifying a file name pattern
is:

C-x C-d /u2/emacs/src/*.c RET

Normally, C-x C-d prints a brief directory listing containing just file names. A numeric
argument (regardless of value) tells it to print a verbose listing (like 1s -1).

Emacs obtains the text of a directory listing by running 1s in an inferior process. Two
Emacs variables control the switches passed to 1s: list-directory-brief-switches is
a string giving the switches to use in brief listings ("-CF" by default). list-directory-
verbose-switches is a string giving the switches to use in a verbose listing ("-1" by
default).

The variable directory-abbrev-alist is an alist of abbreviations for file directories.
The list consists of elements of the form (FROM . T0), each meaning to replace FROM with TO
when it appears in a directory name. This replacement is done when setting up the default
directory of a newly visited file. Every FROM string should start with “~".

Use this feature when you have directories which you normally refer to via absolute
symbolic links. Make TO the name of the link, and FROM the name it is linked to.

15.8 Comparing Files

The command M-x diff compares two files, displaying the differences in an Emacs buffer
named ‘*Diff#*’. It works by running the diff program, using options taken from the
variable diff-switches, whose value should be a string.

The buffer ‘*Diff#*’ has Compilation mode as its major mode, so you can use C-X ~ to
visit successive changed locations in the two source files. You can also move to a particular
hunk of changes and type C-c C-c to find the corresponding source location. You can also
use the other special commands of Compilation mode: tBPCi and DEL for scrolling, and M-p
and M-n for cursor motion. See Section 23.1 [Compilation], page 209.

The command M-x diff-backup compares a specified file with its most recent backup.
If you specify the name of a backup file, diff-backup compares it with the source file that
it is a backup of.

The command M-x compare-windowscompares the text in the current window with that
in the next window. Comparison starts at point in each window. Point moves forward in
each window, a character at a time in each window, until the next characters in the two
windows are different. Then the command is finished. For more information about windows
in Emacs, Chapter 17 [Windows|, page 139.

With a numeric argument, compare-windows ignores changes in whitespace. If the
variable compare-ignore-case is non-nil, it ignores differences in case as well.

15.9 Dired, the Directory Editor

Dired makes it easy to delete or visit many of the files in a single directory at once. It
creates an Emacs buffer containing a listing of the directory. You can use the normal

Emacs commands to move around in this buffer and special Dired commands to operate on
the files.

132 XEmacs User’s Manual

15.9.1 Entering Dired

To invoke dired, type C-x d or M-Xx dired . The command reads a directory name or wildcard
file name pattern as a minibuffer argument just like the list-directory command, C-X
C-d. Where dired differs from list-directory is in naming the buffer after the directory
name or the wildcard pattern used for the listing, and putting the buffer into Dired mode
so that the special commands of Dired are available in it. The variable dired-listing-
switches is a string used as an argument to 1s in making the directory; this string must
contain ‘-1’.

To display the Dired buffer in another window rather than in the selected window, use
C-x 4 d (dired-other-window) instead of C-x d.

15.9.2 Editing in Dired

Once the Dired buffer exists, you can switch freely between it and other Emacs buffers.
Whenever the Dired buffer is selected, certain special commands are provided that operate
on files that are listed. The Dired buffer is “read-only”, and inserting text in it is not
useful, so ordinary printing characters such as d and X are used for Dired commands. Most
Dired commands operate on the file described by the line that point is on. Some commands
perform operations immediately; others “flag” a file to be operated on later.

Most Dired commands that operate on the current line’s file also treat a numeric ar-
gument as a repeat count, meaning to act on the files of the next few lines. A negative
argument means to operate on the files of the preceding lines, and leave point on the first
of those lines.

All the usual Emacs cursor motion commands are available in Dired buffers. Some
special purpose commands are also provided. The keys C-n and C-p are redefined so that
they try to position the cursor at the beginning of the filename on the line, rather than at
the beginning of the line.

For extra convenience, IEPCi and n in Dired are equivalent to C-n. p is equivalent to C-p.
Moving by lines is done so often in Dired that it deserves to be easy to type. IDEL (move
up and unflag) is often useful simply for moving up.

The g command in Dired runs revert-buffer to reinitialize the buffer from the actual
disk directory and show any changes made in the directory by programs other than Dired.
All deletion flags in the Dired buffer are lost when this is done.

15.9.3 Deleting Files With Dired
The primary use of Dired is to flag files for deletion and then delete them.

d Flag this file for deletion.

u Remove deletion-flag on this line.

DEL Remove deletion-flag on previous line, moving point to that line.

X Delete the files that are flagged for deletion.

Flag all auto-save files (files whose names start and end with ‘#’) for deletion

(see Section 15.5 [Auto Save], page 121).

Flag all backup files (files whose names end with ‘~’) for deletion (see Sec-
tion 15.3.1 [Backup], page 118).

Chapter 15: File Handling 133

. (Period) Flag excess numeric backup files for deletion. The oldest and newest few backup
files of any one file are exempt; the middle ones are flagged.

You can flag a file for deletion by moving to the line describing the file and typing d or
C-d. The deletion flag is visible as a ‘D’ at the beginning of the line. Point is moved to the
beginning of the next line, so that repeated d commands flag successive files.

The files are flagged for deletion rather than deleted immediately to avoid the danger of
deleting a file accidentally. Until you direct Dired to delete the flagged files, you can remove
deletion flags using the commands U and DELi. U works just like d, but removes flags rather
than making flags. DEL moves upward, removing flags; it is like u with numeric argument
automatically negated.

To delete the flagged files, type X. This command first displays a list of all the file names
flagged for deletion, and requests confirmation with yes. Once you confirm, all the flagged
files are deleted, and their lines are deleted from the text of the Dired buffer. The shortened
Dired buffer remains selected. If you answer no or quit with C-g, you return immediately
to Dired, with the deletion flags still present and no files actually deleted.

The #, =, and . commands flag many files for deletion, based on their names. These
commands are useful precisely because they do not actually delete any files; you can remove
the deletion flags from any flagged files that you really wish to keep.

flags for deletion all files that appear to have been made by auto-saving (that is, files
whose names begin and end with ‘#’). ~ flags for deletion all files that appear to have been
made as backups for files that were edited (that is, files whose names end with ‘7).

. (Period) flags just some of the backup files for deletion: only numeric backups that are
not among the oldest few nor the newest few backups of any one file. Normally dired-kept-
versions (not kept-new-versions; that applies only when saving) specifies the number of
newest versions of each file to keep, and kept-old-versions specifies the number of oldest
versions to keep. Period with a positive numeric argument, as in C-u 3 ., specifies the
number of newest versions to keep, overriding dired-kept-versions. A negative numeric
argument overrides kept-old-versions, using minus the value of the argument to specify
the number of oldest versions of each file to keep.

15.9.4 Immediate File Operations in Dired

Some file operations in Dired take place immediately when they are requested.

C Copies the file described on the current line. You must supply a file name to
copy to, using the minibuffer.

f Visits the file described on the current line. It is just like typing C-x C-f and
supplying that file name. If the file on this line is a subdirectory, f actually
causes Dired to be invoked on that subdirectory. See Section 15.2 [Visiting],
page 114.

o] Like f, but uses another window to display the file’s buffer. The Dired buffer
remains visible in the first window. This is like using C-x 4 C-f to visit the file.
See Chapter 17 [Windows|, page 139.

R Renames the file described on the current line. You must supply a file name to
rename to, using the minibuffer.

134 XEmacs User’s Manual

% Views the file described on this line using M-x view-file . Viewing a file is like
visiting it, but is slanted toward moving around in the file conveniently and
does not allow changing the file. See Section 15.10 [Misc File Ops]|, page 134.
Viewing a file that is a directory runs Dired on that directory.

15.10 Miscellaneous File Operations

Emacs has commands for performing many other operations on files. All operate on one
file; they do not accept wildcard file names.

You can use the command M-x add-name-to-file to add a name to an existing file
without removing the old name. The new name must belong on the file system that the file
is on.

M-x append-to-file adds the text of the region to the end of the specified file.

M-x copy-file reads the file old and writes a new file named new with the same contents.
Confirmation is required if a file named new already exists, because copying overwrites the
old contents of the file new.

M-x delete-file deletes a specified file, like the rm command in the shell. If you are
deleting many files in one directory, it may be more convenient to use Dired (see Section 15.9
[Dired], page 131).

M-x insert-file inserts a copy of the contents of a specified file into the current buffer at

point, leaving point unchanged before the contents and the mark after them. See Chapter 9
[Mark], page 71.

M-x make-symbolic-link reads two file names old and linkname, and then creates a
symbolic link named linkname and pointing at old. Future attempts to open file linkname
will then refer to the file named old at the time the opening is done, or will result in an
error if the name old is not in use at that time. Confirmation is required if you create the
link while linkname is in use. Note that not all systems support symbolic links.

M-x rename-file reads two file names old and new using the minibuffer, then renames
file old as new. If a file named new already exists, you must confirm with yes or renaming
is not done; this is because renaming causes the previous meaning of the name new to be
lost. If old and new are on different file systems, the file old is copied and deleted.

M-x view-file allows you to scan or read a file by sequential screenfuls. Tt reads a file
name argument using the minibuffer. After reading the file into an Emacs buffer, view-file
reads and displays one windowful. You can then type PG to scroll forward one window,
or IDEL to scroll backward. Various other commands are provided for moving around in
the file, but none for changing it; type C-h while viewing a file for a list of them. Most
commands are the default Emacs cursor motion commands. To exit from viewing, type

C-c.

Chapter 16: Using Multiple Buffers 135

16 Using Multiple Bu ers

Text you are editing in Emacs resides in an object called a buer. Each time you visit
a file, Emacs creates a buffer to hold the file’s text. Each time you invoke Dired, Emacs
creates a buffer to hold the directory listing. If you send a message with C-x m a buffer
named ‘*mail*’ is used to hold the text of the message. When you ask for a command’s
documentation, it appears in a buffer called ‘*Helpx*’.

At any time, one and only one buffer is selected It is also called the current bu er .
Saying a command operates on “the buffer” really means that the command operates on
the selected buffer, as most commands do.

When Emacs creates multiple windows, each window has a chosen buffer which is dis-
played there, but at any time only one of the windows is selected and its chosen buffer is
the selected buffer. Each window’s mode line displays the name of the buffer the window
is displaying (see Chapter 17 [Windows], page 139).

Each buffer has a name which can be of any length but is case-sensitive. You can select a
buffer using its name. Most buffers are created when you visit files; their names are derived
from the files” names. You can also create an empty buffer with any name you want. A
newly started Emacs has a buffer named ‘*scratch*’ which you can use for evaluating Lisp
expressions in Emacs.

Each buffer records what file it is visiting, whether it is modified, and what major mode
and minor modes are in effect in it (see Chapter 19 [Major Modes]|, page 163). Any Emacs
variable can be made local to a particular buffer, meaning its value in that buffer can be
different from the value in other buffers. See Section 29.3.4 [Locals], page 288.

16.1 Creating and Selecting Buffers

C-x b buffer mRETI
Select or create a buffer named bu er (switch-to-buffer).

C-x 4 b buffer RETI
Similar, but select a buffer named buer in another window (switch-to-
buffer-other-window).

M-x switch-to-other-buffer n
Switch to the previous buffer.

To select a buffer named bufname, type C-x b bufname IRETi. This is the command
switch-to-buffer with argument bufname You can use completion on an abbreviation
for the buffer name you want (see Section 6.3 [Completion], page 57). An empty argument
to C-X b specifies the most recently selected buffer that is not displayed in any window.

Most buffers are created when you visit files, or use Emacs commands that display text.
You can also create a buffer explicitly by typing C-x b bufname RETi, which creates a new,
empty buffer that is not visiting any file, and selects it for editing. The new buffer’s major
mode is determined by the value of default-major-mode (see Chapter 19 [Major Modes],
page 163). Buffers not visiting files are usually used for making notes to yourself. If you
try to save one, you are asked for the file name to use.

The function switch-to-buffer-other—-frame is similar to switch-to-buffer except
that it creates a new frame in which to display the selected buffer.

136 XEmacs User’s Manual

Use M-x switch-to-other-buffer to visit the previous buffer. If you supply a positive
integer n, the nth most recent buffer is displayed. If you supply an argument of 0, the
current buffer is moved to the bottom of the buffer stack.

Note that you can also use C-x C-f and any other command for visiting a file to switch
buffers. See Section 15.2 [Visiting], page 114.

16.2 Listing Existing Buffers
C-x C-b List the existing buffers (list-buffers).

To print a list of all existing buffers, type C-x C-b. Each line in the list shows one buffer’s
name, major mode, and visited file. A ‘*’ at the beginning of a line indicates the buffer has
been “modified”. If several buffers are modified, it may be time to save some with C-x s
(see Section 15.3 [Saving], page 116). A ‘%’ indicates a read-only buffer. A ‘.’ marks the
selected buffer. Here is an example of a buffer list:

MR Buffer Size Mode File

¥ emacs.tex 383402 Texinfo /u2/emacs/man/emacs.tex
Help 1287 Fundamental
files.el 23076 Emacs-Lisp /u2/emacsllisplfiles.el

% RMAIL 64042 RMAIL /u/rms/RMAIL

*% man 747 Dired /u2/emacs/man/
net.emacs 343885 Fundamental /u/rms/net.emacs
fileio.c 27691 C /u2/emacs/src/fileio.c
NEWS 67340 Text /u2/emacs/etc/NEWS
scratch 0 Lisp Interaction

Note that the buffer ‘*Help*’ was made by a help request; it is not visiting any file. The
buffer man was made by Dired on the directory ‘/u2/emacs/man/’.

As you move the mouse over the ‘*Buffer List*’ buffer, the lines are highlighted. This
visual cue indicates that clicking the right mouse button (button3) will pop up a menu
of commands on the buffer represented by this line. This menu duplicates most of those
commands which are bound to keys in the ‘*Buffer Listx*’ buffer.

16.3 Miscellaneous Buffer Operations
C-x C-g Toggle read-only status of buffer (toggle-read-only).

M-x rename-buffer
Change the name of the current buffer.

M-x view-buffer
Scroll through a buffer.

A buffer can be read-only, which means that commands to change its text are not
allowed. Normally, read-only buffers are created by subsystems such as Dired and Rmail
that have special commands to operate on the text. Emacs also creates a read-only buffer if
you visit a file that is protected. To make changes in a read-only buffer, use the command
C-x C-q (toggle-read-only). It makes a read-only buffer writable, and makes a writable
buffer read-only. This works by setting the variable buffer-read-only, which has a local
value in each buffer and makes a buffer read-only if its value is non-nil.

Chapter 16: Using Multiple Buffers 137

M-x rename-buffer changes the name of the current buffer, prompting for the new name
in the minibuffer. There is no default. If you specify a name that is used by a different
buffer, an error is signalled and renaming is not done.

M-x view-buffer is similar to M-x view-file (see Section 15.10 [Misc File Ops],
page 134), but it examines an already existing Emacs buffer. View mode provides
convenient commands for scrolling through the buffer but not for changing it. When you
exit View mode, the resulting value of point remains in effect.

To copy text from one buffer to another, use the commands M-x append-to-buffer and
M-x insert-buffer . See Section 10.4 [Accumulating Text], page 84.

16.4 Killing Buffers

After using Emacs for a while, you may accumulate a large number of buffers and may want
to eliminate the ones you no longer need. There are several commands for doing this.

C-x k Kill a buffer, specified by name (kill-buffer).

M-x kill-some-buffers
Offer to kill each buffer, one by one.

C-x k (kill-buffer) kills one buffer, whose name you specify in the minibuffer. If you
type just RETI in the minibuffer, the default, killing the current buffer, is used. If the
current buffer is killed, the buffer that has been selected recently but does not appear in
any window now is selected. If the buffer being killed contains unsaved changes, you are
asked to confirm with yes before the buffer is killed.

The command M-x kill-some-buffers asks about each buffer, one by one. An answer
of y means to kill the buffer. Killing the current buffer or a buffer containing unsaved
changes selects a new buffer or asks for confirmation just like kill-buffer.

16.5 Operating on Several Buffers

The bu er-menu facility is like a “Dired for buffers”; it allows you to request operations on
various Emacs buffers by editing a buffer containing a list of them. You can save buffers,
kill them (here called deleting them, for consistency with Dired), or display them.

M-x buffer-menu
Begin editing a buffer listing all Emacs buffers.

The command buffer-menu writes a list of all Emacs buffers into the buffer ‘*Buffer
List*’, and selects that buffer in Buffer Menu mode. The buffer is read-only. You can only
change it using the special commands described in this section. Most of the commands are
graphic characters. You can use Emacs cursor motion commands in the ‘*Buffer Listx*’
buffer. If the cursor is on a line describing a buffer, the following special commands apply
to that buffer:

d Request to delete (kill) the buffer, then move down. A ‘D’ before the buffer
name on a line indicates a deletion request. Requested deletions actually take
place when you use the X command.

k Synonym for d.

C-d Like d but move up afterwards instead of down.

138 XEmacs User’s Manual

S Request to save the buffer. An ‘S’ before the buffer name on a line indicates
the request. Requested saves actually take place when you use the X command.
You can request both saving and deletion for the same buffer.

Mark buffer “unmodified”. The command ~ does this immediately when typed.

X Perform previously requested deletions and saves.
u Remove any request made for the current line, and move down.
fDELI Move to previous line and remove any request made for that line.

All commands that add or remove flags to request later operations also move down a
line. They accept a numeric argument as a repeat count, unless otherwise specified.

There are also special commands to use the buffer list to select another buffer, and to
specify one or more other buffers for display in additional windows.

1 Select the buffer in a full-frame window. This command takes effect immedi-
ately.
2 Immediately set up two windows, with this buffer in one and the buffer selected

before ‘*Buffer List*’ in the other.
f Immediately select the buffer in place of the ‘*Buffer List*’ buffer.

0 Immediately select the buffer in another window as if by C-x 4 b, leaving
‘*Buffer List*’ visible.

q Immediately select this buffer, and display any buffers previously flagged with
the mcommand in other windows. If there are no buffers flagged with m this
command is equivalent to 1.

m Flag this buffer to be displayed in another window if the g command is used.
The request shows as a ‘> at the beginning of the line. The same buffer may
not have both a delete request and a display request.

Going back between a buffer-menu buffer and other Emacs buffers is easy. You can, for
example, switch from the ‘*Buffer List*’ buffer to another Emacs buffer, and edit there.
You can then reselect the buffer-menu buffer and perform operations already requested,
or you can kill that buffer or pay no further attention to it. All that buffer-menu does
directly is create and select a suitable buffer, and turn on Buffer Menu mode. All the other
capabilities of the buffer menu are implemented by special commands provided in Buffer
Menu mode.

The only difference between buffer-menu and list-buffers is that buffer-menu se-
lects the ‘*Buffer List*’ buffer and list-buffers does not. If you run list-buffers
(that is, type C-x C-b) and select the buffer list manually, you can use all the commands
described here.

Chapter 17: Multiple Windows 139

17 Multiple Windows

Emacs can split the frame into two or many windows, which can display parts of different
buffers or different parts of one buffer. If you are running XEmacs under X, that means
you can have the X window that contains the Emacs frame have multiple subwindows.

17.1 Concepts of Emacs Windows

When Emacs displays multiple windows, each window has one Emacs buffer designated for
display. The same buffer may appear in more than one window; if it does, any changes in
its text are displayed in all the windows that display it. Windows showing the same buffer
can show different parts of it, because each window has its own value of point.

At any time, one window is the selected window the buffer displayed by that window
is the current buffer. The cursor shows the location of point in that window. Each other
window has a location of point as well, but since the terminal has only one cursor, it cannot
show the location of point in the other windows.

Commands to move point affect the value of point for the selected Emacs window only.
They do not change the value of point in any other Emacs window, including those showing
the same buffer. The same is true for commands such as C-x b to change the selected
buffer in the selected window; they do not affect other windows at all. However, there
are other commands such as C-x 4 b that select a different window and switch buffers in
it. Also, all commands that display information in a window, including (for example) C-
h f (describe-function) and C-x C-b (list-buffers), work by switching buffers in a
non-selected window without affecting the selected window.

Each window has its own mode line, which displays the buffer name, modification status,
and major and minor modes of the buffer that is displayed in the window. See Section 1.3
[Mode Line], page 15, for details on the mode line.

17.2 Splitting Windows

C-x 2 Split the selected window into two windows, one above the other (split-
window-vertically).

C-x3 Split the selected window into two windows positioned side by side (split-
window-horizontally).

C-x6 Save the current window configuration in register reg (a letter).

Cx7 Restore (make current) the window configuration in register reg (a letter). Use

with a register previously set with C-x 6.

The command C-x 2 (split-window-vertically) breaks the selected window into two
windows, one above the other. Both windows start out displaying the same buffer, with the
same value of point. By default each of the two windows gets half the height of the window
that was split. A numeric argument specifies how many lines to give to the top window.

C-x 3 (split-window-horizontally) breaks the selected window into two side-by-side
windows. A numeric argument specifies how many columns to give the one on the left. A
line of vertical bars separates the two windows. Windows that are not the full width of
the frame have truncated mode lines which do not always appear in inverse video, because

140 XEmacs User’s Manual

Emacs display routines cannot display a region of inverse video that is only part of a line
on the screen.

When a window is less than the full width, many text lines are too long to fit. Continuing
all those lines might be confusing. Set the variable truncate-partial-width-windows to
non-nil to force truncation in all windows less than the full width of the frame, independent
of the buffer and its value for truncate-lines. See Section 4.7 [Continuation Lines],
page 49.

Horizontal scrolling is often used in side-by-side windows. See Chapter 12 [Display],
page 91.

You can resize a window and store that configuration in a register by supplying a register
argument to window-configuration-to-register (C-x 6). To return to the window con-
figuration established with window-configuration-to-register, use jump-to-register
(C-xJ).

17.3 Using Other Windows

C-xo Select another window (other-window). That is the letter ‘o’, not zero.
M-C-v Scroll the next window (scroll-other-window).

M-x compare-windows
Find the next place where the text in the selected window does not match the
text in the next window.

M-x other-window-any-frame n
Select the nth different window on any frame.

To select a different window, use C-X 0 (other-window). That is an ‘o’, for ‘other’,
not a zero. When there are more than two windows, the command moves through all the
windows in a cyclic order, generally top to bottom and left to right. From the rightmost and
bottommost window, it goes back to the one at the upper left corner. A numeric argument,
n, moves several steps in the cyclic order of windows. A negative numeric argument moves
around the cycle in the opposite order. If the optional second argument which-framesis non-
nil, the function cycles through all frames. When the minibuffer is active, the minibuffer
is the last window in the cycle; you can switch from the minibuffer window to one of the
other windows, and later switch back and finish supplying the minibuffer argument that is
requested. See Section 6.2 [Minibuffer Edit], page 56.

The command M-x other-window-any-frame also selects the window n steps away in
the cyclic order. However, unlike other-window, this command selects a window on the
next or previous frame instead of wrapping around to the top or bottom of the current
frame, when there are no more windows.

The usual scrolling commands (see Chapter 12 [Display], page 91) apply to the selected
window only. M-C-v (scroll-other-window) scrolls the window that C-x 0 would select.
Like C-v, it takes positive and negative arguments.

The command M-x compare-windowscompares the text in the current window with the
text in the next window. Comparison starts at point in each window. Point moves forward
in each window, a character at a time, until the next set of characters in the two windows
are different. Then the command is finished.

Chapter 17: Multiple Windows 141

A prefix argument ignore-whitespacemeans ignore changes in whitespace. The variable
compare-windows-whitespace controls how whitespace is skipped.

If compare-ignore-case is non-nil, changes in case are also ignored.

17.4 Displaying in Another Window

C-X 4 is a prefix key for commands that select another window (splitting the window if there
is only one) and select a buffer in that window. Different C-X 4 commands have different
ways of finding the buffer to select.

C-x 4 b bufname RET
Select buffer bufname in another window. This runs switch—-to-buffer-
other-window.

C-x 4 f filename MRETI
Visit file lename and select its buffer in another window. This runs find-
file-other-window. See Section 15.2 [Visiting], page 114.

C-x 4 d directory WRET
Select a Dired buffer for directory directory in another window. This runs
dired-other-window. See Section 15.9 [Dired], page 131.

C-x4m Start composing a mail message in another window. This runs mail-other-
window, and its same-window version is C-X m(see Chapter 26 [Sending Mail],

page 237).

C-x4. Find a tag in the current tag table in another window. This runs find-tag-
other-window, the multiple-window variant of M-. (see Section 22.11 [Tags],
page 195).

If the variable display-buffer-function is non-nil, its value is the function to call to
handle display-buffer. It receives two arguments, the buffer and a flag that if non-nil
means that the currently selected window is not acceptable. Commands such as switch-
to-buffer-other-window and find-file-other-window work using this function.

17.5 Deleting and Rearranging Windows

C-x0 Get rid of the selected window (delete-window). That is a zero. If there is
more than one Emacs frame, deleting the sole remaining window on that frame
deletes the frame as well. If the current frame is the only frame, it is not deleted.

Cx1 Get rid of all windows except the selected one (delete-other-windows).

C-x -~ Make the selected window taller, at the expense of the other(s)
(enlarge-window).

C-x} Make the selected window wider (enlarge-window-horizontally).
To delete a window, type C-x O (delete-window). (That is a zero.) The space occupied
by the deleted window is distributed among the other active windows (but not the minibuffer

window, even if that is active at the time). Once a window is deleted, its attributes are
forgotten; there is no automatic way to make another window of the same shape or showing

142 XEmacs User’s Manual

the same buffer. The buffer continues to exist, and you can select it in any window with
C-x b.

C-x 1 (delete-other-windows) is more powerful than C-x 0; it deletes all the windows
except the selected one (and the minibuffer). The selected window expands to use the whole
frame except for the echo area.

To readjust the division of space among existing windows, use C-X ~ (enlarge-window).
It makes the currently selected window longer by one line or as many lines as a numeric
argument specifies. With a negative argument, it makes the selected window smaller. C-x }
(enlarge-window-horizontally) makes the selected window wider by the specified number
of columns. The extra screen space given to a window comes from one of its neighbors, if
that is possible; otherwise, all the competing windows are shrunk in the same proportion.
If this makes some windows too small, those windows are deleted and their space is divided
up. Minimum window size is specified by the variables window-min-height and window-
min-width.

You can also resize windows within a frame by clicking the left mouse button on a
modeline, and dragging.

Clicking the right button on a mode line pops up a menu of common window manager
operations. This menu contains the following options:

Delete Window
Remove the window above this modeline from the frame.

Delete Other Windows
Delete all windows on the frame except for the one above this modeline.

Split Window
Split the window above the mode line in half, creating another window.

Split Window Horizontally
Split the window above the mode line in half horizontally, so that there will be
two windows side-by-side.

Balance Windows
Readjust the sizes of all windows on the frame until all windows have roughly
the same number of lines.

Chapter 18: World Scripts Support 143

18 World Scripts Support

If you build XEmacs using the ——with-mule option, it supports a wide variety of world
scripts, including the Latin script, the Arabic script, Simplified Chinese (for mainland of
China), Traditional Chinese (for Taiwan and Hong-Kong), the Greek script, the Hebrew
script, IPA symbols, Japanese scripts (Hiragana, Katakana and Kanji), Korean scripts
(Hangul and Hanja) and the Cyrillic script (for Byelorussian, Bulgarian, Russian, Serbian
and Ukrainian). These features have been merged from the modified version of Emacs
known as MULE (for “MULti-lingual Enhancement to GNU Emacs”).

18.1 Introduction: The Wide Variety of Scripts and Codings
in Use

There are hundreds of scripts in use world-wide. The users of these scripts have established
many more-or-less standard coding systems for storing text written in them in files. XEmacs
translates between its internal character encoding and various other coding systems when
reading and writing files, when exchanging data with subprocesses, and (in some cases) in
the C-q command (see below).!

The command C-h h (view-hello-file) displays the file ‘etc/HELLQ’, which shows how
to say “hello” in many languages. This illustrates various scripts.

Keyboards, even in the countries where these character sets are used, generally don’t
have keys for all the characters in them. So XEmacs supports various input methods,
typically one for each script or language, to make it convenient to type them.

The prefix key C-x RETI is used for commands that pertain to world scripts, coding
systems, and input methods.

18.2 Language Environments

All supported character sets are supported in XEmacs buffers if it is compiled with mule;
there is no need to select a particular language in order to display its characters in an
XEmacs buffer. However, it is important to select a language environmentin order to set
various defaults. The language environment really represents a choice of preferred script
(more or less) rather that a choice of language.

The language environment controls which coding systems to recognize when reading
text (see Section 18.6 [Recognize Coding], page 147). This applies to files, incoming mail,
netnews, and any other text you read into XEmacs. It may also specify the default coding
system to use when you create a file. Each language environment also specifies a default
input method.

The command to select a language environment is M-x set-language-environment . It
makes no difference which buffer is current when you use this command, because the effects
apply globally to the XEmacs session. The supported language environments include:

ASCII, Chinese-BIGbH, Chinese-GB, Croatian, Cyrillic-ALT, Cyrillic-ISO,
Cyrillic-KOI8, Cyrillic-Win, Czech, English, Ethiopic, French, German, Greek,

! Historically the internal encoding was a specially designed encoding, called Mule encoding, intended for
easy conversion to and from versions of ISO 2022. However, this encoding shares many properties with
UTF-8, and conversion to UTF-8 as the internal code is proposed.

144 XEmacs User’s Manual

Hebrew, TPA, Japanese, Korean, Latin-1, Latin-2, Latin-3, Latin-4, Latin-5,
Norwegian, Polish, Romanian, Slovenian, Thai-XTIS, Vietnamese.

Some operating systems let you specify the language you are using by setting locale
environment variables. XEmacs handles one common special case of this: if your locale
name for character types contains the string ‘8859-n’, XEmacs automatically selects the
corresponding language environment.

To display information about the effects of a certain language environment lang-env, use
the command C-h L lang-env RETi (describe-language-environment). This tells you
which languages this language environment is useful for, and lists the character sets, coding
systems, and input methods that go with it. It also shows some sample text to illustrate
scripts used in this language environment. By default, this command describes the chosen
language environment.

18.3 Input Methods

An input method is a kind of character conversion designed specifically for interactive input.
In XEmacs, typically each language has its own input method; sometimes several languages
which use the same characters can share one input method. A few languages support several
input methods.

The simplest kind of input method works by mapping ASCII letters into another alpha-
bet. This is how the Greek and Russian input methods work.

A more powerful technique is composition: converting sequences of characters into one
letter. Many European input methods use composition to produce a single non-ASCII letter
from a sequence that consists of a letter followed by accent characters. For example, some
methods convert the sequence 'a into a single accented letter.

The input methods for syllabic scripts typically use mapping followed by composition.
The input methods for Thai and Korean work this way. First, letters are mapped into
symbols for particular sounds or tone marks; then, sequences of these which make up a
whole syllable are mapped into one syllable sign.

Chinese and Japanese require more complex methods. In Chinese input methods, first
you enter the phonetic spelling of a Chinese word (in input method chinese-py, among
others), or a sequence of portions of the character (input methods chinese-4corner and
chinese-sw, and others). Since one phonetic spelling typically corresponds to many dif-
ferent Chinese characters, you must select one of the alternatives using special XEmacs
commands. Keys such as C-f, C-b, C-n, C-p, and digits have special definitions in this
situation, used for selecting among the alternatives. HTABiI displays a buffer showing all the
possibilities.

In Japanese input methods, first you input a whole word using phonetic spelling; then,
after the word is in the buffer, XEmacs converts it into one or more characters using a large
dictionary. One phonetic spelling corresponds to many differently written Japanese words,
so you must select one of them; use C-n and C-p to cycle through the alternatives.

Sometimes it is useful to cut off input method processing so that the characters you have
just entered will not combine with subsequent characters. For example, in input method
latin-1-postfix, the sequence € ' combines to form an ‘e’ with an accent. What if you
want to enter them as separate characters?

Chapter 18: World Scripts Support 145

One way is to type the accent twice; that is a special feature for entering the separate
letter and accent. For example, @ "' gives you the two characters ‘e’’. Another way is to
type another letter after the e—something that won’t combine with that—and immediately
delete it. For example, you could type e e IDELI ' to get separate ‘e’ and *’’.

Another method, more general but not quite as easy to type, is to use C-\ C-\ between
two characters to stop them from combining. This is the command C-\ (toggle-input-
method) used twice.

C-\ C-\ is especially useful inside an incremental search, because stops waiting for more
characters to combine, and starts searching for what you have already entered.

The variables input-method-highlight-flag and input-method-verbose-flag con-
trol how input methods explain what is happening. If input-method-highlight-flag is
non-nil, the partial sequence is highlighted in the buffer. If input-method-verbose-flag
is non-nil, the list of possible characters to type next is displayed in the echo area (but not
when you are in the minibuffer).

18.4 Selecting an Input Method
C-\ Enable or disable use of the selected input method.

C-x RETi C-\ method MRETI
Select a new input method for the current buffer.

C-h | method RETI

C-h C-\ method HRETi
Describe the input method method (describe-input-method). By default, it
describes the current input method (if any).

M-x list-input-methods
Display a list of all the supported input methods.

To choose an input method for the current buffer, use C-x frRETi C-\ (select-input-
method). This command reads the input method name with the minibuffer; the name
normally starts with the language environment that it is meant to be used with. The
variable current-input-method records which input method is selected.

Input methods use various sequences of ASCII characters to stand for non-ASCII char-
acters. Sometimes it is useful to turn off the input method temporarily. To do this, type
C-\ (toggle-input-method). To reenable the input method, type C-\ again.

If you type C-\ and you have not yet selected an input method, it prompts for you to
specify one. This has the same effect as using C-X RRETi C-\ to specify an input method.

Selecting a language environment specifies a default input method for use in various
buffers. When you have a default input method, you can select it in the current buffer by
typing C-\. The variable default-input-method specifies the default input method (nil
means there is none).

Some input methods for alphabetic scripts work by (in effect) remapping the keyboard
to emulate various keyboard layouts commonly used for those scripts. How to do this
remapping properly depends on your actual keyboard layout. To specify which layout your
keyboard has, use the command M-x quail-set-keyboard-layout

146 XEmacs User’s Manual

To display a list of all the supported input methods, type M-X list-input-methods
The list gives information about each input method, including the string that stands for it
in the mode line.

18.5 Coding Systems

Users of various languages have established many more-or-less standard coding systems
for representing them. XEmacs does not use these coding systems internally: instead, it
converts from various coding systems to its own system when reading data, and converts the
internal coding system to other coding systems when writing data. Conversion is possible
in reading or writing files, in sending or receiving from the terminal, and in exchanging data
with subprocesses.

XEmacs assigns a name to each coding system. Most coding systems are used for one
language, and the name of the coding system starts with the language name. Some coding
systems are used for several languages; their names usually start with ‘iso’. There are also
special coding systems binary and no-conversion which do not convert printing characters
at all.

In addition to converting various representations of non-ASCII characters, a coding
system can perform end-of-line conversion. XEmacs handles three different conventions for
how to separate lines in a file: newline, carriage-return linefeed, and just carriage-return.

C-x meTi C coding RETI
Describe coding system coding.

C-x RETI CHRETI
Describe the coding systems currently in use.

M-x list-coding-systems
Display a list of all the supported coding systems.

C-u M-x list-coding-systems
Display comprehensive list of specific details of all supported coding systems.

The command C-x RET (describe-coding-system) displays information about par-
ticular coding systems. You can specify a coding system name as argument; alternatively,
with an empty argument, it describes the coding systems currently selected for various pur-
poses, both in the current buffer and as the defaults, and the priority list for recognizing
coding systems (see Section 18.6 [Recognize Coding], page 147).

To display a list of all the supported coding systems, type M-x list-coding-systems
The list gives information about each coding system, including the letter that stands for it
in the mode line (see Section 1.3 [Mode Line], page 15).

Each of the coding systems that appear in this list—except for binary, which means
no conversion of any kind—specifies how and whether to convert printing characters, but
leaves the choice of end-of-line conversion to be decided based on the contents of each file.
For example, if the file appears to use carriage-return linefeed between lines, that end-of-line
conversion will be used.

Each of the listed coding systems has three variants which specify exactly what to do
for end-of-line conversion:

Chapter 18: World Scripts Support 147

..—unix Don’t do any end-of-line conversion; assume the file uses newline to separate
lines. (This is the convention normally used on Unix and GNU systems.)

..—dos Assume the file uses carriage-return linefeed to separate lines, and do the appro-
priate conversion. (This is the convention normally used on Microsoft systems.)

..-mac Assume the file uses carriage-return to separate lines, and do the appropriate
conversion. (This is the convention normally used on the Macintosh system.)

These variant coding systems are omitted from the list-coding-systems display for
brevity, since they are entirely predictable. For example, the coding system iso-8859-1
has variants iso-8859-1-unix, is0-8859-1-dos and iso-8859-1-mac.

In contrast, the coding system binary specifies no character code conversion at all—none
for non-Latin-1 byte values and none for end of line. This is useful for reading or writing
binary files, tar files, and other files that must be examined verbatim.

The easiest way to edit a file with no conversion of any kind is with the M-x find-file-
literally command. This uses binary, and also suppresses other XEmacs features that
might convert the file contents before you see them. See Section 15.2 [Visiting], page 114.

The coding system no-conversion means that the file contains non-Latin-1 characters
stored with the internal XEmacs encoding. It handles end-of-line conversion based on
the data encountered, and has the usual three variants to specify the kind of end-of-line
conversion.

18.6 Recognizing Coding Systems

Most of the time, XEmacs can recognize which coding system to use for any given file-once
you have specified your preferences.

Some coding systems can be recognized or distinguished by which byte sequences appear
in the data. However, there are coding systems that cannot be distinguished, not even
potentially. For example, there is no way to distinguish between Latin-1 and Latin-2; they
use the same byte values with different meanings.

XEmacs handles this situation by means of a priority list of coding systems. Whenever
XEmacs reads a file, if you do not specify the coding system to use, XEmacs checks the data
against each coding system, starting with the first in priority and working down the list,
until it finds a coding system that fits the data. Then it converts the file contents assuming
that they are represented in this coding system.

The priority list of coding systems depends on the selected language environment (see
Section 18.2 [Language Environments], page 143). For example, if you use French, you
probably want XEmacs to prefer Latin-1 to Latin-2; if you use Czech, you probably want
Latin-2 to be preferred. This is one of the reasons to specify a language environment.

However, you can alter the priority list in detail with the command M-Xx prefer-coding-
system. This command reads the name of a coding system from the minibuffer, and adds it
to the front of the priority list, so that it is preferred to all others. If you use this command
several times, each use adds one element to the front of the priority list.

Sometimes a file name indicates which coding system to use for the file. The vari-
able file-coding-system-alist specifies this correspondence. There is a special function
modify-coding-system-alist for adding elements to this list. For example, to read and

148 XEmacs User’s Manual

write all ‘. txt’ using the coding system china-iso-8bit, you can execute this Lisp expres-
sion:
(modify-coding-system-alist ‘file "\.txt\\"" 'china-iso-8bit)

The first argument should be file, the second argument should be a regular expression that
determines which files this applies to, and the third argument says which coding system to
use for these files.

You can specify the coding system for a particular file using the ‘=x-. .. -*=" construct at
the beginning of a file, or a local variables list at the end (see Section 29.3.5 [File Variables],
page 289). You do this by defining a value for the “variable” named coding. XEmacs does
not really have a variable coding; instead of setting a variable, it uses the specified coding
system for the file. For example, ‘-*-mode: C; coding: is0-8859-1;-*-" specifies use of
the is0-8859-1 coding system, as well as C mode.

Once XEmacs has chosen a coding system for a buffer, it stores that coding system in
buffer-file-coding-system and uses that coding system, by default, for operations that
write from this buffer into a file. This includes the commands save-buffer and write-
region. If you want to write files from this buffer using a different coding system, you can
specify a different coding system for the buffer using set-buffer-file-coding-system
(see Section 18.8 [Specify Coding], page 158).

18.7 Character Set Unification

Mule suffers from a design defect that causes it to consider the ISO Latin character sets
to be disjoint. This results in oddities such as files containing both ISO 8859/1 and ISO
8859/15 codes, and using ISO 2022 control sequences to switch between them, as well as
more plausible but often unnecessary combinations like ISO 8859/1 with ISO 8859/2. This
can be very annoying when sending messages or even in simple editing on a single host.
XEmacs works around the problem by converting as many characters as possible to use a
single Latin coded character set before saving the buffer.

Unification is planned for extension to other character set families, in particular the Han
family of character sets based on the Chinese ideographic characters. At least for the Han
sets, however, the unification feature will be disabled by default.

This functionality is based on the ‘latin-unity’ package by Stephen Turnbull
stephen@xemacs.org, but is somewhat divergent. This documentation is also based on the
package documentation, and is likely to be inaccurate because of the different constraints
we place on “core” and packaged functionality.

18.7.1 An Overview of Character Set Uni cation

Mule suffers from a design defect that causes it to consider the ISO Latin character sets
to be disjoint. This manifests itself when a user enters characters using input methods
associated with different coded character sets into a single buffer.

A very important example involves email. Many sites, especially in the U.S., default to
use of the ISO 8859/1 coded character set (also called “Latin 1,” though these are somewhat
different concepts). However, ISO 8859/1 provides a generic CURRENCY SIGN character.
Now that the Euro has become the official currency of most countries in Europe, this is
unsatisfactory (and in practice, useless). So Europeans generally use ISO 8859/15, which is

mailto:stephen@xemacs.org

Chapter 18: World Scripts Support 149

nearly identical to ISO 8859/1 for most languages, except that it substitutes EURO SIGN
for CURRENCY SIGN.

Suppose a European user yanks text from a post encoded in ISO 8859/1 into a message
composition buffer, and enters some text including the Euro sign. Then Mule will consider
the buffer to contain both ISO 8859/1 and ISO 8859/15 text, and MUAs such as Gnus will
(if naively programmed) send the message as a multipart mixed MIME body!

This is clearly stupid. What is not as obvious is that, just as any European can include
American English in their text because ASCII is a subset of ISO 8859/15, most European
languages which use Latin characters (eg, German and Polish) can typically be mixed while
using only one Latin coded character set (in this case, ISO 8859/2). However, this often
depends on exactly what text is to be encoded.

Unification works around the problem by converting as many characters as possible to
use a single Latin coded character set before saving the buffer.

18.7.2 Operation of Uni cation

This is a description of the early hack to include unification in XEmacs 21.5. This will
almost surely change.

Normally, unification works in the background by installing unity-sanity-check on
write-region-pre-hook. Unification is on by default for the ISO-8859 Latin sets. The user
activates this functionality for other chacter set families by invoking enable-unification,
either interactively or in her init file. See Section 29.7 [Init File], page 300. Unification can
be deactivated by invoking disable-unification.

Unification also provides a few functions for remapping or recoding the buffer by hand.
To remap a character means to change the buffer representation of the character by using
another coded character set. Remapping never changes the identity of the character, but
may involve altering the code point of the character. To recodea character means to simply
change the coded character set. Recoding never alters the code point of the character, but
may change the identity of the character. See Section 18.7.5 [Unification Theory], page 155.

There are a few variables which determine which coding systems are always
acceptable to unification: unity-ucs-1list, unity-preferred-coding-system-list, and
unity-preapproved-coding-system-list. The last defaults to (buffer preferred),
and you should probably avoid changing it because it short-circuits the sanity check. If
you find you need to use it, consider reporting it as a bug or request for enhancement.

18.7.2.1 Basic Functionality

These functions and user options initialize and configure unification. In normal use, they
are not needed.

These interfaces will change. Also, theunity-' pre x is likely to be changed for many
of the variables and functions, as they are of more general usefulness.

enable-unification [Function]
Set up hooks and initialize variables for unification.

There are no arguments.

This function is idempotent. It will reinitialize any hooks or variables that are not in
initial state.

150 XEmacs User’s Manual

disable-unification [Function]
There are no arguments.

Clean up hooks and void variables used by unification.

unity-ucs-list [User Option]
List of universal coding systems recommended for character set unification.

The default value is > (utf-8 is0-2022-7 ctext escape-quoted).

Order matters; coding systems earlier in the list will be preferred when recommending
a coding system. These coding systems will not be used without querying the user (un-
less they are also present in unity-preapproved-coding-system-1list), and follow
the unity-preferred-coding-system-1list in the list of suggested coding systems.

If none of the preferred coding systems are feasible, the first in this list will be the
default.

Notes on certain coding systems: escape-quoted is a special coding system used for
autosaves and compiled Lisp in Mule. You should never delete this, although it is
rare that a user would want to use it directly. Unification does not try to be “smart”
about other general ISO 2022 coding systems, such as ISO-2022-JP. (They are not
recognized as equivalent to is0-2022-7.) If your preferred coding system is one of
these, you may consider adding it to unity-ucs-1list.

Coding systems which are not Latin and not in unity-ucs-1ist are handled by short
circuiting checks of coding system against the next two variables.

unity-preapproved-coding-system-list [User Option]
List of coding systems used without querying the user if feasible.

The default value is ‘(buffer-default preferred)’.

The first feasible coding system in this list is used. The special values ‘preferred’
and ‘buffer-default’ may be present:

buffer-default
Use the coding system used by ‘write-region’, if feasible.

preferred
Use the coding system specified by ‘prefer-coding-system’ if feasible.

"Feasible" means that all characters in the buffer can be represented by the coding sys-
tem. Coding systems in ‘unity-ucs-1list’ are always considered feasible. Other fea-
sible coding systems are computed by ‘unity-representations-feasible-region’.

Note that, by definition, the first universal coding system in this list shadows all other
coding systems. In particular, if your preferred coding system is a universal coding
system, and preferred is a member of this list, unification will blithely convert all
your files to that coding system. This is considered a feature, but it may surprise most
users. Users who don’t like this behavior may put preferred in unity-preferred-
coding-system-list, but not in unity-preapproved-coding-system-list.

unity-preferred-coding-system-list [User Option]
List of coding systems suggested to the user if feasible.

Chapter 18: World Scripts Support 151

The default value is ‘(is0-8859-1 is0-8859-15 is0-8859-2 is0-8859-3
is0-8859-4 is0-8859-9)".

If none of the coding systems in ‘unity-preapproved-coding-system-1list’ are fea-
sible, this list will be recommended to the user, followed by the ‘unity-ucs-1list’ (so
those coding systems should not be in this list). The first coding system in this list
is default. The special values ‘preferred’ and ‘buffer-default’ may be present:

buffer-default
Use the coding system used by ‘write-region’, if feasible.

preferred
Use the coding system specified by ‘prefer-coding-system’ if feasible.

"Feasible" means that all characters in the buffer can be represented by the coding sys-
tem. Coding systems in ‘unity-ucs-1list’ are always considered feasible. Other fea-
sible coding systems are computed by ‘unity-representations-feasible-region’.

unity-iso-8859-1-aliases [Variable]
List of coding systems to be treated as aliases of ISO 8859/1.

The default value is ’(iso-8859-1).

This is not a user variable; to customize input of coding systems or charsets,
‘unity-coding-system-alias-alist’ or ‘unity-charset-alias-alist’.

18.7.2.2 Interactive Usage

First, the hook function unity-sanity-check is documented. (It is placed here because it
is not an interactive function, and there is not yet a programmer’s section of the manual.)

These functions provide access to internal functionality (such as the remapping function)
and to extra functionality (the recoding functions and the test function).

unity-sanity-check begin end lename append visit lockname [Function]
&optional coding-system
Check if coding-systemcan represent all characters between begin and end.

For compatibility with old broken versions of write-region, coding-systemdefaults
to buffer-file-coding-system. lename, append visit, and lockname are ignored.

Return nil if buffer-file-coding-system is not (ISO-2022-compatible) Latin. If buffer-
file-coding-system is safe for the charsets actually present in the buffer, return it.
Otherwise, ask the user to choose a coding system, and return that.

This function does not do the safe thing when buffer-file-coding-system is nil
(aka no-conversion). It considers that “non-Latin,” and passes it on to the Mule
detection mechanism.

This function is intended for use as a write-region-pre-hook. It does nothing
except return coding-systemif write-region handlers are inhibited.

unity-buffer-representations-feasible [Function]
There are no arguments.

Apply unity-region-representations-feasible to the current buffer.

152 XEmacs User’s Manual

unity-region-representations-feasible begin end &optional buf [Function]
Return character sets that can represent the text from begin to end in buf.

buf defaults to the current buffer. Called interactively, will be applied to the region.
The function assumes begin <= end.

The return value is a cons. The car is the list of character sets that can individually
represent all of the non-ASCII portion of the buffer, and the cdr is the list of character
sets that can individually represent all of the ASCII portion.

The following is taken from a comment in the source. Please refer to the source to
be sure of an accurate description.

The basic algorithm is to map over the region, compute the set of charsets that can
represent each character (the “feasible charset”), and take the intersection of those
sets.

The current implementation takes advantage of the fact that ASCII characters are
common and cannot change asciisets. Then using skip-chars-forward makes motion
over ASCII subregions very fast.

This same strategy could be applied generally by precomputing classes of characters
equivalent according to their effect on latinsets, and adding a whole class to the
skip-chars-forward string once a member is found.

Probably efficiency is a function of the number of characters matched, or maybe
the length of the match string? With skip-category-forward over a precomputed
category table it should be really fast. In practice for Latin character sets there are
only 29 classes.

unity-remap-region begin end character-set&optional coding-system [Function]
Remap characters between begin and end to equivalents in character-set Optional
argument coding-systemmay be a coding system name (a symbol) or nil. Characters
with no equivalent are left as-is.

When called interactively, begin and end are set to the beginning and end, respec-
tively, of the active region, and the function prompts for character-set The function
does completion, knows how to guess a character set name from a coding system
name, and also provides some common aliases. See unity-guess-charset. There is
no way to specify coding-system as it has no useful function interactively.

Return coding-systemif coding-systemcan encode all characters in the region, t if
coding-systemis nil and the coding system with GO = ’ascii and G1 = character-set
can encode all characters, and otherwise nil. Note that a non-null return does not
mean it is safe to write the file, only the specified region. (This behavior is useful for
multipart MIME encoding and the like.)

Note: by default this function is quite fascist about universal coding systems. It only
admits ‘utf-8’, ‘is0-2022-7’, and ‘ctext’. Customize unity-approved-ucs-1list
to change this.

This function remaps characters that are artificially distinguished by Mule internal

code. It may change the code point as well as the character set. To recode characters
that were decoded in the wrong coding system, use unity-recode-region.

Chapter 18: World Scripts Support 153

unity-recode-region begin end wrong-cs right-cs [Function]
Recode characters between begin and end from wrong-cs to right-cs.

wrong-cs and right-cs are character sets. Characters retain the same code point but
the character set is changed. Only characters from wrong-cs are changed to right-
cs The identity of the character may change. Note that this could be dangerous, if
characters whose identities you do not want changed are included in the region. This
function cannot guess which characters you want changed, and which should be left
alone.

When called interactively, begin and end are set to the beginning and end, respec-
tively, of the active region, and the function prompts for wrong-cs and right-cs. The
function does completion, knows how to guess a character set name from a coding
system name, and also provides some common aliases. See unity-guess-charset.
Another way to accomplish this, but using coding systems rather than character sets
to specify the desired recoding, is ‘unity-recode-coding-region’. That function
may be faster but is somewhat more dangerous, because it may recode more than one
character set.

To change from one Mule representation to another without changing identity of any
characters, use ‘unity-remap-region’.

unity-recode-coding-region begin end wrong-cs right-cs [Function]
Recode text between begin and end from wrong-cs to right-cs.
wrong-cs and right-cs are coding systems. Characters retain the same code point
but the character set is changed. The identity of characters may change. This is an
inherently dangerous function; multilingual text may be recoded in unexpected ways.
#H### It’s also dangerous because the coding systems are not sanity-checked in the
current implementation.
When called interactively, begin and end are set to the beginning and end, respec-
tively, of the active region, and the function prompts for wrong-cs and right-cs. The
function does completion, knows how to guess a coding system name from a character
set name, and also provides some common aliases. See unity-guess-coding-system.
Another, safer, way to accomplish this, using character sets rather than coding sys-
tems to specify the desired recoding, is to use unity-recode-region.
To change from one Mule representation to another without changing identity of any
characters, use unity-remap-region.

Helper functions for input of coding system and character set names.

unity-guess-charset candidate [Function]
Guess a charset based on the symbol candidate.

candidate itself is not tried as the value.
Uses the natural mapping in ‘unity-cset-codesys-alist’, and the values in
‘unity-charset-alias-alist’."

unity-guess-coding-system candidate [Function]
Guess a coding system based on the symbol candidate.
candidate itself is not tried as the value.

154 XEmacs User’s Manual

Uses the natural mapping in ‘unity-cset-codesys-alist’, and the values in
‘unity-coding-system-alias-alist’."

unity-example [Function]
A cheesy example for unification.
At present it just makes a multilingual buffer. To test, setq buffer-file-coding-system
to some value, make the buffer dirty (eg with RET BackSpace), and save.

18.7.3 Con guring Uni cation for Use

If you want unification to be automatically initialized, invoke ‘enable-unification’ with
no arguments in your init file. See Section 29.7 [Init File], page 300. If you are using GNU
Emacs or an XEmacs earlier than 21.1, you should also load ‘auto-autoloads’ using the
full path (never ‘require’ ‘auto-autoloads’ libraries).

You may wish to define aliases for commonly used character sets and coding systems for
convenience in input.

unity-charset-alias-alist [User Option]
Alist mapping aliases to Mule charset names (symbols)."
The default value is
((latin-1 . latin-iso8859-1)
(latin-2 . latin-iso08859-2)
(latin-3 . latin-iso08859-3)
(latin-4 . latin-iso08859-4)
(latin-5 . latin-iso8859-9)
(latin-9 . latin-iso8859-15)
(latin-10 . latin-iso08859-16))
If a charset does not exist on your system, it will not complete and you will not be
able to enter it in response to prompts. A real charset with the same name as an
alias in this list will shadow the alias.

unity-coding-system-alias-alist nil [User Option]
Alist mapping aliases to Mule coding system names (symbols).

The default value is ‘nil’.

18.7.4 Frequently Asked Questions About Uni cation

1. I'm smarter than XEmacs’s unification feature! How can that be?
Don’t be surprised. Trust yourself.
Unification is very young as yet. Teach it what you know by Customizing its variables,
and report your changes to the maintainer (M-Xx report-xemacs-bug RET).

2. What is a UCS?
According to ISO 10646, a Universal Coded character Set. In XEmacs, it’s Universal
(Mule) Coding System. Section 18.5 [Coding Systems]|, page 146

3. I know utf-16-1le-bom is a UCS, but unification won’t use it. Why not?

There are an awful lot of UCSes in Mule, and you probably do not want to ever use,
and definitely not be asked about, most of them. So the default set includes a few that
the author thought plausible, but they’re surely not comprehensive or optimal.

Chapter 18: World Scripts Support 155

Customize unity-ucs-1ist to include the ones you use often, and report your favorites
to the maintainer for consideration for inclusion in the defaults using M-x report-
xemacs-bug RET (Note that you must include escape-quoted in this list, because
Mule uses it internally as the coding system for auto-save files.)

Alternatively, if you just want to use it this one time, simply type it in at the prompt.
Unification will confirm that is a real coding system, and then assume that you know
what you're doing.

4. This is crazy: I can’t quit XEmacs and get queried on autosaves! Why?
You probably removed escape-quoted from unity-ucs-1list. Put it back.
5. Unification is really buggy and I can’t get any work done.

First, use M-x disable-unification RET | then report your problems as a bug (M-Xx
report-xemacs-bug RET).

18.7.5 Uni cation Theory

Standard encodings suffer from the design defect that they do not provide a reliable way to
recognize which coded character sets in use. See Section 18.7.6 [What Unification Cannot
Do for You|, page 157. There are scores of character sets which can be represented by a
single octet (8-bit byte), whose union contains many hundreds of characters. Obviously this
results in great confusion, since you can’t tell the players without a scorecard, and there is
no scorecard.

There are two ways to solve this problem. The first is to create a universal coded
character set. This is the concept behind Unicode. However, there have been satisfactory
(nearly) universal character sets for several decades, but even today many Westerners resist
using Unicode because they consider its space requirements excessive. On the other hand,
many Asians dislike Unicode because they consider it to be incomplete. (This is partly, but
not entirely, political.)

In any case, Unicode only solves the internal representation problem. Many data sets
will contain files in “legacy” encodings, and Unicode does not help distinguish among them.

The second approach is to embed information about the encodings used in a document
in its text. This approach is taken by the ISO 2022 standard. This would solve the problem
completely from the users’ of view, except that ISO 2022 is basically not implemented
at all, in the sense that few applications or systems implement more than a small subset
of ISO 2022 functionality. This is due to the fact that mono-literate users object to the
presence of escape sequences in their texts (which they, with some justification, consider data
corruption). Programmers are more than willing to cater to these users, since implementing
ISO 2022 is a painstaking task.

In fact, Emacs/Mule adopts both of these approaches. Internally it uses a universal
character set, Mule code Externally it uses ISO 2022 techniques both to save files in forms
robust to encoding issues, and as hints when attempting to “guess” an unknown encoding.
However, Mule suffers from a design defect, namely it embeds the character set information
that ISO 2022 attaches to runs of characters by introducing them with a control sequence
in each character. That causes Mule to consider the ISO Latin character sets to be disjoint.
This manifests itself when a user enters characters using input methods associated with
different coded character sets into a single buffer.

156 XEmacs User’s Manual

There are two problems stemming from this design. First, Mule represents the same
character in different ways. Abstractly, 'ce,Asce(B’ (LATIN SMALL LETTER O WITH
ACUTE) can get represented as [latin-iso8859-1 #x73] or as [latin-iso8859-2 #x73]. So
what looks like ’oe,Assce(B’ in the display might actually be represented [latin-iso8859-1
#x73][latin-is08859-2 #x73] in the buffer, and saved as [#xF3 ESC - B #xF3 ESC - A] in the
file. In some cases this treatment would be appropriate (consider HYPHEN, MINUS SIGN,
EN DASH, EM DASH, and U+4E00 (the CJK ideographic character meaning “one”)), and
although arguably incorrect it is convenient when mixing the CJK scripts. But in the case
of the Latin scripts this is wrong.

Worse yet, it is very likely to occur when mixing “different” encodings (such as ISO
8859/1 and ISO 8859/15) that differ only in a few code points that are almost never used.
A very important example involves email. Many sites, especially in the U.S., default to use
of the ISO 8859/1 coded character set (also called “Latin 1,” though these are somewhat
different concepts). However, ISO 8859/1 provides a generic CURRENCY SIGN character.
Now that the Euro has become the official currency of most countries in Europe, this is
unsatisfactory (and in practice, useless). So Europeans generally use ISO 8859/15, which is
nearly identical to ISO 8859/1 for most languages, except that it substitutes EURO SIGN
for CURRENCY SIGN.

Suppose a European user yanks text from a post encoded in ISO 8859/1 into a message
composition buffer, and enters some text including the Euro sign. Then Mule will consider
the buffer to contain both ISO 8859/1 and ISO 8859/15 text, and MUAs such as Gnus will
(if naively programmed) send the message as a multipart mixed MIME body!

This is clearly stupid. What is not as obvious is that, just as any European can include
American English in their text because ASCII is a subset of ISO 8859/15, most European
languages which use Latin characters (eg, German and Polish) can typically be mixed while
using only one Latin coded character set (in the case of German and Polish, ISO 8859/2).
However, this often depends on exactly what text is to be encoded (even for the same pair
of languages).

Unification works around the problem by converting as many characters as possible to
use a single Latin coded character set before saving the buffer.

Because the problem is rarely noticable in editing a buffer, but tends to manifest when
that buffer is exported to a file or process, unification uses the strategy of examining the
buffer prior to export. If use of multiple Latin coded character sets is detected, unification
attempts to unify them by finding a single coded character set which contains all of the
Latin characters in the buffer.

The primary purpose of unification is to fix the problem by giving the user the choice
to change the representation of all characters to one character set and give sensible rec-
ommendations based on context. In the 'ce,Asce(B’ example, either ISO 8859/1 or ISO
8859/2 is satisfactory, and both will be suggested. In the EURO SIGN example, only ISO
8859/15 makes sense, and that is what will be recommended. In both cases, the user will
be reminded that there are universal encodings available.

I call this remapping (from the universal character set to a particular ISO 8859 coded
character set). It is mere accident that this letter has the same code point in both character
sets. (Not entirely, but there are many examples of Latin characters that have different
code points in different Latin-X sets.)

Chapter 18: World Scripts Support 157

Note that, in the ’oe,Asce(B’ example, that treating the buffer in this way will result in
a representation such as [latin-iso8859-2 #x73|[latin-is08859-2 #x73], and the file will be
saved as [#xF3 #xF3]. This is guaranteed to occasionally result in the second problem you
observed, to which we now turn.

This problem is that, although the file is intended to be an ISO-8859/2-encoded file,
in an ISO 8859/1 locale Mule (and every POSIX compliant program—this is required by
the standard, obvious if you think a bit, see Section 18.7.6 [What Unification Cannot Do
for You|, page 157) will read that file as [latin-iso8859-1 #x73] [latin-iso8859-1 #x73]. Of
course this is no problem if all of the characters in the file are contained in ISO 8859/1, but
suppose there are some which are not, but are contained in the (intended) ISO 8859/2.

You now want to fix this, but not by finding the same character in another set. Instead,
you want to simply change the character set that Mule associates with that buffer position
without changing the code. (This is conceptually somewhat distinct from the first problem,
and logically ought to be handled in the code that defines coding systems. However, unifi-
cation is not an unreasonable place for it.) Unification provides two functions (one fast and
dangerous, the other slower and careful) to handle this. I call this recoding because the
transformation actually involves encoding the buffer to file representation, then decoding it
to buffer representation (in a different character set). This cannot be done automatically
because Mule can have no idea what the correct encoding is—after all, it already gave you
its best guess. See Section 18.7.6 [What Unification Cannot Do for You|, page 157. So these
functions must be invoked by the user. See Section 18.7.2.2 [Interactive Usage], page 151.

18.7.6 What Uni cation Cannot Do for You

Unification cannot save you if you insist on exporting data in 8-bit encodings in a multi-
lingual environment. You will eventually corrupt data if you do this. It is not Mule’s, or
any application’s, fault. You will have only yourself to blame; consider yourself warned.
(Tt is true that Mule has bugs, which make Mule somewhat more dangerous and inconve-
nient than some naive applications. We're working to address those, but no application can
remedy the inherent defect of 8-bit encodings.)

Use standard universal encodings, preferably Unicode (UTF-8) unless applicable stan-
dards indicate otherwise. The most important such case is Internet messages, where MIME
should be used, whether or not the subordinate encoding is a universal encoding. (Note
that since one of the important provisions of MIME is the ‘Content-Type’ header, which
has the charset parameter, MIME is to be considered a universal encoding for the purposes
of this manual. Of course, technically speaking it’s neither a coded character set nor a
coding extension technique compliant with ISO 2022.)

As mentioned earlier, the problem is that standard encodings suffer from the design
defect that they do not provide a reliable way to recognize which coded character sets are
in use. There are scores of character sets which can be represented by a single octet (8-bit
byte), whose union contains many hundreds of characters. Thus any 8-bit coded character
set must contain characters that share code points used for different characters in other
coded character sets.

This means that a given file’s intended encoding cannot be identified with 100% reliability
unless it contains encoding markers such as those provided by MIME or ISO 2022.

Unification actually makes it more likely that you will have problems of this kind. Tra-
ditionally Mule has been “helpful” by simply using an ISO 2022 universal coding system

158 XEmacs User’s Manual

when the current buffer coding system cannot handle all the characters in the buffer. This
has the effect that, because the file contains control sequences, it is not recognized as being
in the locale’s normal 8-bit encoding. It may be annoying if you are not a Mule expert, but
your data is guaranteed to be recoverable with a tool you already have: Mule.

However, with unification, Mule converts to a single 8-bit character set when possible.
But typically this will not be in your usual locale. Ie, the times that an ISO 8859/1 user
will need unification is when there are ISO 8859/2 characters in the buffer. But then most
likely the file will be saved in a pure 8-bit encoding that is not ISO 8859/1, ie, ISO 8859/2.
Mule’s autorecognizer (which is probably the most sophisticated yet available) cannot tell
the difference between ISO 8859/1 and ISO 8859/2, and in a Western European locale will
choose the former even though the latter was intended. Even the extension (“statistical
recognition”) planned for XEmacs 22 is unlikely to be acceptably accurate in the case of
mixed codes.

So now consider adding some additional ISO 8859/1 text to the buffer. If it includes
any ISO 8859/1 codes that are used by different characters in ISO 8859/2, you now have a
file that cannot be mechanically disentangled. You need a human being who can recognize
that this is German and Swedish and stays in Latin-1, while that s Polish and needs to be
recoded to Latin-2.

Moral: switch to a universal coded character set, preferably Unicode using the UTF-8
transformation format. If you really need the space, compress your files.

18.8 Specifying a Coding System

In cases where XEmacs does not automatically choose the right coding system, you can use
these commands to specify one:

C-x RETi f coding MRET
Use coding system coding for the visited file in the current buffer.

C-x RETI ¢ coding MRET
Specify coding system coding for the immediately following command.

C-x RETI k coding RETI
Use coding system coding for keyboard input. (This feature is non-functional
and is temporarily disabled.)

C-x RRET t coding IRETI
Use coding system coding for terminal output.

C-x RETI p coding MRETI
Use coding system coding for subprocess input and output in the current buffer.

The command C-x RET f (set-buffer-file-coding-system) specifies the file coding
system for the current buffer—in other words, which coding system to use when saving or
rereading the visited file. You specify which coding system using the minibuffer. Since this
command applies to a file you have already visited, it affects only the way the file is saved.

Another way to specify the coding system for a file is when you visit the file. First use
the command C-X [RETI C (universal-coding-system-argument); this command uses the
minibuffer to read a coding system name. After you exit the minibuffer, the specified coding
system is used for the immediately following command.

Chapter 18: World Scripts Support 159

So if the immediately following command is C-x C-f, for example, it reads the file using
that coding system (and records the coding system for when the file is saved). Or if the
immediately following command is C-x C-w, it writes the file using that coding system.
Other file commands affected by a specified coding system include C-x C-i and C-x C-v, as
well as the other-window variants of C-x C-f.

In addition, if you run some file input commands with the precedent C-u, you can specify
coding system to read from minibuffer. So if the immediately following command is C-x C-
f, for example, it reads the file using that coding system (and records the coding system for
when the file is saved). Other file commands affected by a specified coding system include
C-x C-i and C-x C-v, as well as the other-window variants of C-x C-f.

The variable default-buffer-file-coding-system specifies the choice of coding sys-
tem to use when you create a new file. It applies when you find a new file, and when you
create a buffer and then save it in a file. Selecting a language environment typically sets
this variable to a good choice of default coding system for that language environment.

The command C-x RRETi t (set-terminal-coding-system) specifies the coding system
for terminal output. If you specify a character code for terminal output, all characters
output to the terminal are translated into that coding system.

This feature is useful for certain character-only terminals built to support specific lan-
guages or character sets—for example, European terminals that support one of the ISO
Latin character sets.

By default, output to the terminal is not translated at all.

The command C-x RETI Kk (set-keyboard-coding-system) specifies the coding system
for keyboard input. Character-code translation of keyboard input is useful for terminals
with keys that send non-ASCII graphic characters—for example, some terminals designed
for ISO Latin-1 or subsets of it.

(This feature is non-functional and is temporarily disabled.)
By default, keyboard input is not translated at all.

There is a similarity between using a coding system translation for keyboard input, and
using an input method: both define sequences of keyboard input that translate into single
characters. However, input methods are designed to be convenient for interactive use by
humans, and the sequences that are translated are typically sequences of ASCII printing
characters. Coding systems typically translate sequences of non-graphic characters.

The command C-X IRETi p (set-buffer-process-coding-system) specifies the coding
system for input and output to a subprocess. This command applies to the current buffer;
normally, each subprocess has its own buffer, and thus you can use this command to specify
translation to and from a particular subprocess by giving the command in the corresponding
buffer.

By default, process input and output are not translated at all.

The variable file-name-coding-system specifies a coding system to use for encoding
file names. If you set the variable to a coding system name (as a Lisp symbol or a string),
XEmacs encodes file names using that coding system for all file operations. This makes
it possible to use non-Latin-1 characters in file names—or, at least, those non-Latin-1
characters which the specified coding system can encode. By default, this variable is nil,
which implies that you cannot use non-Latin-1 characters in file names.

160 XEmacs User’s Manual

18.9 Charsets and Coding Systems

This section provides reference lists of Mule charsets and coding systems. Mule charsets
are typically named by character set and standard.

ASCII variants
Identification of equivalent characters in these sets is not properly implemented.
Unification does not distinguish the two charsets.
‘ascii’ ‘latin-jisx0201’

Extended Latin
Characters from the following ISO 2022 conformant charsets are identified with
equivalents in other charsets in the group by unification.
‘latin-iso08859-1’ ‘latin-iso08859-15’ ‘latin-iso08859-2’
‘latin-i1s08859-3" ‘latin-is08859-4’ ‘latin-is08859-9 ‘latin-is08859-13'
‘latin-is08859-16’
The follow charsets are Latin variants which are not understood by unification.
In addition, many of the Asian language standards provide ASCIIL, at least, and
sometimes other Latin characters. None of these are identified with their ISO
8859 equivalents.

‘vietnamese-viscii-lower’ ‘vietnamese-viscii-upper’

Other character sets
‘arabic-1-column’ ‘arabic-2-column’ ‘arabic-digit’ ‘arabic-iso8859-6’

‘chinese-bigh-1’ ‘chinese-big5-2’ ‘chinese-cns11643-1’
‘chinese-cns11643-2’ ‘chinese-cns11643-3’ ‘chinese-cns11643-4’
‘chinese-cns11643-5’ ‘chinese-cns11643-6’ ‘chinese-cns11643-7’

‘chinese-gb2312’ ‘chinese-isoir165’ ‘cyrillic-iso8859-5’ ‘ethiopic’
‘greek-iso8859-7’ ‘hebrew-iso8859-8’ ‘ipa’ ‘japanese-jisx0208’
‘japanese-jisx0208-1978’ ‘japanese-jisx0212’ ‘katakana-jisx0201’
‘korean-kscb5601’ ‘sisheng’ ‘thai-tis620’ ‘thai-xtis’

Non-graphic charsets
‘control-1’

No conversion
Some of these coding systems may specify EOL conventions. Note that
‘is0-8859-1" is a no-conversion coding system, not an ISO 2022 coding
system. Although unification attempts to compensate for this, it is possible
that the ‘1s0-8859-1" coding system will behave differently from other ISO
8859 coding systems.

‘binary’ ‘no-conversion’ ‘raw-text’ ‘iso-8859-1’

Latin coding systems
These coding systems are all single-byte, 8-bit ISO 2022 coding systems, com-
bining ASCII in the GL register (bytes with high-bit clear) and an extended
Latin character set in the GR register (bytes with high-bit set).
‘i50-8859-15" ‘is0-8859-2’ ‘is0-8859-3’ ‘is0-8859-4’ ‘is0-8859-9’
‘180-8859-13’ ‘180-8859-14" ‘is0-8859-16’

Chapter 18: World Scripts Support 161

These coding systems are single-byte, 8-bit coding systems that do not conform
to international standards. They should be avoided in all potentially multilin-
gual contexts, including any text distributed over the Internet and World Wide
Web.

‘windows-1251’

Multilingual coding systems
The following ISO-2022-based coding systems are useful for multilingual text.
‘ctext’ ‘is0-2022-1lock’ ‘is0-2022-7’ ‘1s0-2022-7bit’ ‘is0-2022-7bit-ss2’
‘i50-2022-8’ ‘is0-2022-8bit-ss2’
XEmacs also supports Unicode with the Mule-UCS package. These are the
preferred coding systems for multilingual use. (There is a possible exception
for texts that mix several Asian ideographic character sets.)
‘utf-16-be’ ‘utf-16-be-no-signature’ ‘utf-16-1le’ ‘utf-16-le-no-signature’l]
‘utf-7" ‘utf-7-safe’ ‘utf-8 ‘utf-8-ws’
Development versions of XEmacs (the 21.5 series) support Unicode internally,
with (at least) the following coding systems implemented:
‘utf-16-be’ ‘utf-16-be-bom’ ‘utf-16-le’ ‘utf-16-le-bom’ ‘utf-8’
‘utf-8-bom’

Asian ideographic languages

The following coding systems are based on ISO 2022, and are more or less suit-
able for encoding multilingual texts. They all can represent ASCII at least,
and sometimes several other foreign character sets, without resort to arbitrary
ISO 2022 designations. However, these subsets are not identified with the cor-
responding national standards in XEmacs Mule.

‘chinese-euc’ ‘cn-bigh’ ‘cn-gb-2312" ‘gb2312’ ‘hz’ ‘hz-gb-2312’
‘old-jis’ ‘japanese-euc’ ‘junet’ ‘euc-japan’ ‘euc-jp’ ‘iso0-2022-jp’
‘1i50-2022-jp-1978-irv’ ‘i50-2022-jp-2’ ‘euc-kr’ ‘korean-euc’
‘i50-2022-kr’ ‘is0-2022-int-1’

The following coding systems cannot be used for general multilingual text and
do not cooperate well with other coding systems.

‘bigh’ ‘shift_jis’

Other languages
The following coding systems are based on ISO 2022. Though none of them
provides any Latin characters beyond ASCII, XEmacs Mule allows (and up to
21.4 defaults to) use of ISO 2022 control sequences to designate other character
sets for inclusion the text.
‘i50-8859-5" ‘150-8859-7" ‘i50-8859-8 ‘ctext-hebrew’
The following are character sets that do not conform to ISO 2022 and thus
cannot be safely used in a multilingual context.
‘alternativnyj’ ‘koi8-r’ ‘tis-620’ ‘viqr’ ‘viscii’ ‘vscii’

Special coding systems
Mule uses the following coding systems for special purposes.

162 XEmacs User’s Manual

‘automatic-conversion’ ‘undecided’ ‘escape-quoted’

‘escape-quoted’ is especially important, as it is used internally as the coding
system for autosaved data.

The following coding systems are aliases for others, and are used for communi-
cation with the host operating system.

‘file-name’ ‘keyboard’ ‘terminal’

Mule detection of coding systems is actually limited to detection of classes of coding
systems called coding categories These coding categories are identified by the ISO 2022
control sequences they use, if any, by their conformance to ISO 2022 restrictions on code
points that may be used, and by characteristic patterns of use of 8-bit code points.

‘no-conversion’ ‘utf-8 ‘ucs-4’ ‘iso-7’ ‘iso-lock-shift’ ‘iso-8-1" ‘iso-8-2’
‘iso-8-designate’ ‘shift-jis’ ‘bigh’

Chapter 19: Major Modes 163

19 Major Modes

Emacs has many different major modes each of which customizes Emacs for editing text
of a particular sort. The major modes are mutually exclusive; at any time, each buffer has
one major mode. The mode line normally contains the name of the current major mode in
parentheses. See Section 1.3 [Mode Line], page 15.

The least specialized major mode is called Fundamental mode This mode has no mode-
specific redefinitions or variable settings. Each Emacs command behaves in its most general
manner, and each option is in its default state. For editing any specific type of text, such as
Lisp code or English text, you should switch to the appropriate major mode, such as Lisp
mode or Text mode.

Selecting a major mode changes the meanings of a few keys to become more specifically
adapted to the language being edited. HrABi, IDELI, and ILFDi are changed frequently. In
addition, commands which handle comments use the mode to determine how to delimit
comments. Many major modes redefine the syntactical properties of characters appearing
in the buffer. See Section 29.6 [Syntax|, page 298.

The major modes fall into three major groups. Lisp mode (which has several variants),
C mode, and Muddle mode are for specific programming languages. Text mode, Nroff
mode, TEX mode, and Outline mode are for editing English text. The remaining major
modes are not intended for use on users’ files; they are used in buffers created by Emacs
for specific purposes and include Dired mode for buffers made by Dired (see Section 15.9
[Dired], page 131), Mail mode for buffers made by C-x m(see Chapter 26 [Sending Mail],
page 237), and Shell mode for buffers used for communicating with an inferior shell process
(see Section 28.2.2 [Interactive Shell], page 273).

Most programming language major modes specify that only blank lines separate para-
graphs. This is so that the paragraph commands remain useful. See Section 21.4 [Para-
graphs], page 177. They also cause Auto Fill mode to use the definition of HTABi to indent
the new lines it creates. This is because most lines in a program are usually indented. See
Chapter 20 [Indentation], page 165.

19.1 Choosing Major Modes

You can select a major mode explicitly for the current buffer, but most of the time Emacs
determines which mode to use based on the file name or some text in the file.

Use a M-x command to explicitly select a new major mode. Add -mode to the name of
a major mode to get the name of a command to select that mode. For example, to enter
Lisp mode, execute M-x lisp-mode .

When you visit a file, Emacs usually chooses the right major mode based on the file’s
name. For example, files whose names end in .c are edited in C mode. The variable auto-
mode-alist controls the correspondence between file names and major mode. Its value is
a list in which each element has the form:

(regexp . mode-function)
For example, one element normally found in the list has the form ("\\.c$" . c-mode). It
is responsible for selecting C mode for files whose names end in ‘.c’. (Note that ‘\\’ is
needed in Lisp syntax to include a ‘\’ in the string, which is needed to suppress the special
meaning of ‘. in regexps.) The only practical way to change this variable is with Lisp code.

164 XEmacs User’s Manual

You can specify which major mode should be used for editing a certain file by a special
sort of text in the first non-blank line of the file. The mode name should appear in this
line both preceded and followed by ‘-*-". Other text may appear on the line as well. For
example,

;—*—Lisp—*-
tells Emacs to use Lisp mode. Note how the semicolon is used to make Lisp treat this line
as a comment. Such an explicit specification overrides any default mode based on the file
name.
Another format of mode specification is:
-*-Mode: modename-*-

which allows other things besides the major mode name to be specified. However, Emacs
does not look for anything except the mode name.

The major mode can also be specified in a local variables list. See Section 29.3.5 [File
Variables], page 289.

When you visit a file that does not specify a major mode to use, or when you create a new
buffer with C-x b, Emacs uses the major mode specified by the variable default-major-
mode. Normally this value is the symbol fundamental-mode, which specifies Fundamental
mode. If default-major-mode is nil, the major mode is taken from the previously selected
buffer.

Chapter 20: Indentation 165

20 Indentation

hrABI Indent current line “appropriately” in a mode-dependent fashion.

HLFDi Perform RETi followed by HABI (newline-and-indent).

M-~ Merge two lines (delete-indentation). This would cancel out the effect of
LEDI .

C-M-o Split line at point; text on the line after point becomes a new line indented to

the same column that it now starts in (split-line).

M-m Move (forward or back) to the first non-blank character on the current line
(back-to-indentation).

C-M-\ Indent several lines to same column (indent-region).
C-x HraBi Shift block of lines rigidly right or left (indent-rigidly).
M-i Indent from point to the next prespecified tab stop column (tab-to-tab-stop).

M-x indent-relative
Indent from point to under an indentation point in the previous line.

Most programming languages have some indentation convention. For Lisp code, lines
are indented according to their nesting in parentheses. The same general idea is used for C
code, though details differ.

Use the MTABI command to indent a line whatever the language. Each major mode
defines this command to perform indentation appropriate for the particular language. In
Lisp mode, hraBsi aligns a line according to its depth in parentheses. No matter where in the
line you are when you type HFABI, it aligns the line as a whole. In C mode, HTABi implements
a subtle and sophisticated indentation style that knows about many aspects of C syntax.

In Text mode, HTABI runs the command tab-to-tab-stop, which indents to the next
tab stop column. You can set the tab stops with M-x edit-tab-stops

20.1 Indentation Commands and Techniques

If you just want to insert a tab character in the buffer, you can type C-q HrABi.

To move over the indentation on a line, type Meta-m (back-to-indentation). This
command, given anywhere on a line, positions point at the first non-blank character on the
line.

To insert an indented line before the current line, type C-a C-0 hraBi. To make an
indented line after the current line, use C-e ILFDi.

C-M-0 (split-1line) moves the text from point to the end of the line vertically down, so
that the current line becomes two lines. C-M-ofirst moves point forward over any spaces and
tabs. Then it inserts after point a newline and enough indentation to reach the same column
point is on. Point remains before the inserted newline; in this regard, C-M-0resembles C-0.

To join two lines cleanly, use the Meta-~ (delete-indentation) command to delete the
indentation at the front of the current line, and the line boundary as well. Empty spaces
are replaced by a single space, or by no space if at the beginning of a line, before a close
parenthesis, or after an open parenthesis. To delete just the indentation of a line, go to the

166 XEmacs User’s Manual

beginning of the line and use Meta-\ (delete-horizontal-space), which deletes all spaces
and tabs around the cursor.

There are also commands for changing the indentation of several lines at once. Control-
Meta-\ (indent-region) gives each line which begins in the region the “usual” indentation
by invoking HTABiI at the beginning of the line. A numeric argument specifies the column
to indent to. Each line is shifted left or right so that its first non-blank character appears
in that column. C-x HTABi (indent-rigidly) moves all the lines in the region right by its
argument (left, for negative arguments). The whole group of lines moves rigidly sideways,
which is how the command gets its name.

M-x indent-relative indents at point based on the previous line (actually, the last
non-empty line.) It inserts whitespace at point, moving point, until it is underneath an
indentation point in the previous line. An indentation point is the end of a sequence of
whitespace or the end of the line. If point is farther right than any indentation point in the
previous line, the whitespace before point is deleted and the first indentation point then
applicable is used. If no indentation point is applicable even then, tab-to-tab-stop is run
(see next section).

indent-relative is the definition of HCABi in Indented Text mode. See Chapter 21
[Text], page 169.

20.2 Tab Stops

For typing in tables, you can use Text mode’s definition of TABi, tab-to-tab-stop. This
command inserts indentation before point, enough to reach the next tab stop column. Even
if you are not in Text mode, this function is associated with M-i anyway.

You can arbitrarily set the tab stops used by M-i. They are stored as a list of column-
numbers in increasing order in the variable tab-stop-1list.

The convenient way to set the tab stops is using M-x edit-tab-stops , which creates and
selects a buffer containing a description of the tab stop settings. You can edit this buffer to
specify different tab stops, and then type C-c C-C to make those new tab stops take effect.
In the tab stop buffer, C-c C-c runs the function edit-tab-stops-note-changes rather
than the default save-buffer. edit-tab-stops records which buffer was current when
you invoked it, and stores the tab stops in that buffer. Normally all buffers share the same
tab stops and changing them in one buffer affects all. If you make tab-stop-1list local in
one buffer edit-tab-stops in that buffer edits only the local settings.

Below is the text representing ordinary tab stops every eight columns:

0 1 2 3 4
0123456789012345678901234567890123456789012345678
To install changes, type C-c C-c

The first line contains a colon at each tab stop. The remaining lines help you see where
the colons are and tell you what to do.

Note that the tab stops that control tab-to-tab-stop have nothing to do with displaying
tab characters in the buffer. See Section 12.4 [Display Vars|, page 93, for more information
on that.

Chapter 20: Indentation 167

20.3 Tabs vs. Spaces

Emacs normally uses both tabs and spaces to indent lines. If you prefer, all indentation
can be made from spaces only. To request this, set indent-tabs-mode to nil. This is
a per-buffer variable; altering the variable affects only the current buffer, but there is a
default value which you can change as well. See Section 29.3.4 [Locals|, page 288.

There are also commands to convert tabs to spaces or vice versa, always preserving
the columns of all non-blank text. M-x tabify scans the region for sequences of spaces,
and converts sequences of at least three spaces to tabs if that is possible without changing
indentation. M-x untabify changes all tabs in the region to corresponding numbers of
spaces.

168 XEmacs User’s Manual

Chapter 21: Commands for Human Languages 169

21 Commands for Human Languages

The term text has two widespread meanings in our area of the computer field. One is
data that is a sequence of characters. In this sense of the word any file that you edit with
Emacs is text. The other meaning is more restrictive: a sequence of characters in a human
language for humans to read (possibly after processing by a text formatter), as opposed to
a program or commands for a program.

Human languages have syntactic and stylistic conventions that editor commands should
support or use to advantage: conventions involving words, sentences, paragraphs, and cap-
ital letters. This chapter describes Emacs commands for all these things. There are also
commands for lling , or rearranging paragraphs into lines of approximately equal length.
The commands for moving over and killing words, sentences, and paragraphs, while intended
primarily for editing text, are also often useful for editing programs.

Emacs has several major modes for editing human language text. If a file contains plain
text, use Text mode, which customizes Emacs in small ways for the syntactic conventions
of text. For text which contains embedded commands for text formatters, Emacs has other
major modes, each for a particular text formatter. Thus, for input to TEX, you can use
TEX mode; for input to nroff, Nroff mode.

21.1 Text Mode

You should use Text mode—rather than Fundamental or Lisp mode—to edit files of text
in a human language. Invoke M-x text-mode to enter Text mode. In Text mode, HTABI
runs the function tab-to-tab-stop, which allows you to use arbitrary tab stops set with
M-x edit-tab-stops (see Section 20.2 [Tab Stops|, page 166). Features concerned with
comments in programs are turned off unless they are explicitly invoked. The syntax table
is changed so that periods are not considered part of a word, while apostrophes, backspaces
and underlines are.

A similar variant mode is Indented Text mode, intended for editing text in which most
lines are indented. This mode defines HTABI to run indent-relative (see Chapter 20
[Indentation|, page 165), and makes Auto Fill indent the lines it creates. As a result, a line
made by Auto Filling, or by ILFDi, is normally indented just like the previous line. Use M-X
indented-text-mode to select this mode.

Entering Text mode or Indented Text mode calls the value of the variable text-mode-
hook with no arguments, if that value exists and is not nil. This value is also called when
modes related to Text mode are entered; this includes Nroff mode, TEX mode, Outline
mode, and Mail mode. Your hook can look at the value of major-mode to see which of
these modes is actually being entered.

Two modes similar to Text mode are of use for editing text that is to be passed through
a text formatter before achieving its final readable form.

21.1.1 Nro Mode

Nroff mode is a mode like Text mode but modified to handle nroff commands present in the
text. Invoke M-x nroff-mode to enter this mode. Nroff mode differs from Text mode in only
a few ways. All nroff command lines are considered paragraph separators, so that filling
never garbles the nroff commands. Pages are separated by ‘.bp’ commands. Comments

170 XEmacs User’s Manual

start with backslash-doublequote. There are also three special commands that are not
available in Text mode:

M-n Move to the beginning of the next line that isn’t an nroff command (forward-
text-line). An argument is a repeat count.

M-p Like M-nbut move up (backward-text-line).

M-? Prints in the echo area the number of text lines (lines that are not nroff com-
mands) in the region (count-text-lines).

The other feature of Nroff mode is Electric Nroff newline mode. This is a minor mode
that you can turn on or off with M-x electric-nroff-mode (see Section 29.1 [Minor Modes],
page 281). When the mode is on and you use RETi to end a line containing an nroff command
that opens a kind of grouping, Emacs automatically inserts the matching nroff command to
close that grouping on the following line. For example, if you are at the beginning of a line
and type .(b MRETi, the matching command ‘.)b’ will be inserted on a new line following
point.

Entering Nroff mode calls the value of the variable text-mode-hook with no arguments,
if that value exists and is not nil; then it does the same with the variable nroff-mode-hook.

21.1.2 TEX Mode

TEX is a powerful text formatter written by Donald Knuth; like GNU Emacs, it is free.
LaTgX is a simplified input format for TEX, implemented by TEX macros. It is part of
TEX.

Emacs has a special TEX mode for editing TgX input files. It provides facilities for
checking the balance of delimiters and for invoking TEX on all or part of the file.

TEX mode has two variants, Plain TEX mode and LaTgX mode, which are two distinct
major modes that differ only slightly. These modes are designed for editing the two different
input formats. The command M-x tex-mode looks at the contents of a buffer to determine
whether it appears to be LaTEX input or not; it then selects the appropriate mode. If it
can’t tell which is right (e.g., the buffer is empty), the variable tex-default-mode controls
which mode is used.

The commands M-x plain-tex-mode and M-X latex-mode explicitly select one of the
variants of TEX mode. Use these commands when M-X tex-mode does not guess right.

TEX for Unix systems can be obtained from the University of Washington for a distri-
bution fee.

To order a full distribution, send $140.00 for a 1/2 inch 9-track tape, $165.00 for two
4-track 1/4 inch cartridge tapes (foreign sites $150.00, for 1/2 inch, $175.00 for 1/4 inch,
to cover the extra postage) payable to the University of Washington to:

The Director

Northwest Computer Support Group, DW-10
University of Washington

Seattle, Washington 98195

Purchase orders are acceptable, but there is an extra charge of $10.00 to pay for processing
charges. (The total cost comes to $150 for domestic sites, $175 for foreign sites).

Chapter 21: Commands for Human Languages 171

The normal distribution is a tar tape, blocked 20, 1600 bpi, on an industry standard 2400
foot half-inch reel. The physical format for the 1/4 inch streamer cartridges uses QIC-11,
8000 bpi, 4-track serpentine recording for the SUN. Also, SystemV tapes can be written in
cpio format, blocked 5120 bytes, ASCII headers.

21.1.2.1 TEX Editing Commands
Here are the special commands provided in TEX mode for editing the text of the file.

" Insert, according to context, either ‘¢ ‘" or *"” or > ?’ (TeX-insert-quote).
HLFDi Insert a paragraph break (two newlines) and check the previous paragraph for
unbalanced braces or dollar signs (tex-terminate-

paragraph).

M-x validate-tex-buffer
Check each paragraph in the buffer for unbalanced braces or dollar signs.

C-cH{ Insert ‘{}’ and position point between them (tex-insert-braces).
C-c} Move forward past the next unmatched close brace (up-list).
C-c C-e Close a block for LaTEX (tex-close-latex-block).

In TEX, the character ‘"’ is not normally used; you use ‘¢ ¢’ to start a quotation and ‘*’
to end one. TEX mode defines the key " to insert ‘¢ ¢’ after whitespace or an open brace,
‘7 after a backslash, or ‘7?7 otherwise. This is done by the command tex-insert-quote.
If you need the character ‘" itself in unusual contexts, use C-g to insert it. Also, " with a
numeric argument always inserts that number of ‘"’ characters.

In TEX mode, ‘$’ has a special syntax code which attempts to understand the way TEX
math mode delimiters match. When you insert a ‘¢’ that is meant to exit math mode,
the position of the matching ‘$’ that entered math mode is displayed for a second. This is
the same feature that displays the open brace that matches a close brace that is inserted.
However, there is no way to tell whether a ‘$’ enters math mode or leaves it; so when you
insert a ‘¢’ that enters math mode, the previous ‘$’ position is shown as if it were a match,
even though they are actually unrelated.

If you prefer to keep braces balanced at all times, you can use C-c { (tex-insert-
braces) to insert a pair of braces. It leaves point between the two braces so you can insert
the text that belongs inside. Afterward, use the command C-C } (up-1list) to move forward
past the close brace.

There are two commands for checking the matching of braces. LFDi (tex-terminate-
paragraph) checks the paragraph before point, and inserts two newlines to start a new
paragraph. It prints a message in the echo area if any mismatch is found. M-x validate-
tex-buffer checks the entire buffer, paragraph by paragraph. When it finds a paragraph
that contains a mismatch, it displays point at the beginning of the paragraph for a few
seconds and pushes a mark at that spot. Scanning continues until the whole buffer has
been checked or until you type another key. The positions of the last several paragraphs
with mismatches can be found in the mark ring (see Section 9.1.4 [Mark Ring], page 73).

Note that square brackets and parentheses, not just braces, are matched in TEX mode.
This is wrong if you want to check TEX syntax. However, parentheses and square brackets

172 XEmacs User’s Manual

are likely to be used in text as matching delimiters and it is useful for the various motion
commands and automatic match display to work with them.

In LaTEX input, ‘\begin’ and ‘\end’ commands must balance. After you insert a
‘\begin’, use C-c C-f (tex-close-latex-block) to insert automatically a matching ‘\end’
(on a new line following the ‘\begin’). A blank line is inserted between the two, and point
is left there.

21.1.2.2 TEX Printing Commands

You can invoke TEX as an inferior of Emacs on either the entire contents of the buffer or
just a region at a time. Running TEX in this way on just one chapter is a good way to see
what your changes look like without taking the time to format the entire file.

C-c C-r Invoke TEX on the current region, plus the buffer’s header (tex-region).
C-c C-b Invoke TEX on the entire current buffer (tex-buffer).

C-c C-l Recenter the window showing output from the inferior TEX so that the last
line can be seen (tex-recenter-output-buffer).

C-c C-k Kill the inferior TEX (tex-kill-job).
C-c C-p Print the output from the last C-c C-r or C-c C-b command (tex-print).
C-c C-g Show the printer queue (tex-show-print-queue).

You can pass the current buffer through an inferior TEX using C-c C-b (tex-buffer).
The formatted output appears in a file in ‘/tmp’; to print it, type C-c C-p (tex-print). Af-
terward use C-c C-q (tex-show-print-queue) to view the progress of your output towards
being printed.

The console output from TEX, including any error messages, appears in a buffer called
‘*TeX-shellx’. If TEX gets an error, you can switch to this buffer and feed it input (this
works as in Shell mode; see Section 28.2.2 [Interactive Shell], page 273). Without switching
to this buffer, you can scroll it so that its last line is visible by typing C-c C-l .

Type C-c C-k (tex-kill-job) to kill the TEX process if you see that its output is no
longer useful. Using C-c C-b or C-c C-r also kills any TEX process still running.

You can pass an arbitrary region through an inferior TgEX by typing C-c C-r (tex-
region). This is tricky, however, because most files of TEX input contain commands at the
beginning to set parameters and define macros. Without them, no later part of the file will
format correctly. To solve this problem, C-c C-r allows you to designate a part of the file
as containing essential commands; it is included before the specified region as part of the
input to TEX. The designated part of the file is called the header

To indicate the bounds of the header in Plain TEX mode, insert two special strings in
the file: ‘%**start of header’ before the header, and ‘/**end of header’ after it. Each
string must appear entirely on one line, but there may be other text on the line before or
after. The lines containing the two strings are included in the header. If ‘) **start of
header’ does not appear within the first 100 lines of the buffer, C-c C-r assumes there is
no header.

In LaTEX mode, the header begins with ‘\documentstyle’ and ends with

“\begin{document}’. These are commands that LaTgX requires you to use, so you don’t
need to do anything special to identify the header.

Chapter 21: Commands for Human Languages 173

When you enter either kind of TEX mode, Emacs calls with no arguments the value
of the variable text-mode-hook, if that value exists and is not nil. Emacs then calls the
variable TeX-mode-hook and either plain-TeX-mode-hook or LaTeX-mode-hook under the
same conditions.

21.1.3 Outline Mode

Outline mode is a major mode similar to Text mode but intended for editing outlines. It
allows you to make parts of the text temporarily invisible so that you can see just the overall
structure of the outline. Type M-X outline-mode to turn on Outline mode in the current
buffer.

When you enter Outline mode, Emacs calls with no arguments the value of the variable
text-mode-hook, if that value exists and is not nil; then it does the same with the variable
outline-mode-hook.

When a line is invisible in outline mode, it does not appear on the screen. The screen
appears exactly as if the invisible line were deleted, except that an ellipsis (three periods
in a row) appears at the end of the previous visible line (only one ellipsis no matter how
many invisible lines follow).

All editing commands treat the text of the invisible line as part of the previous visible line.
For example, C-n moves onto the next visible line. Killing an entire visible line, including its
terminating newline, really kills all the following invisible lines as well; yanking everything
back yanks the invisible lines and they remain invisible.

21.1.3.1 Format of Outlines

Outline mode assumes that the lines in the buffer are of two types: heading linesand body
lines. A heading line represents a topic in the outline. Heading lines start with one or more
stars; the number of stars determines the depth of the heading in the outline structure.
Thus, a heading line with one star is a major topic; all the heading lines with two stars
between it and the next one-star heading are its subtopics; and so on. Any line that is not
a heading line is a body line. Body lines belong to the preceding heading line. Here is an
example:

* Food

This is the body,
which says something about the topic of food.

** Delicious Food

This is the body of the second-level header.
** Distasteful Food

This could have

a body too, with

several lines.

% Dormitory Food

174 XEmacs User’s Manual

* Shelter

A second first-level topic with its header line.

A heading line together with all following body lines is called collectively an entry. A
heading line together with all following deeper heading lines and their body lines is called
a subtree

You can customize the criterion for distinguishing heading lines by setting the vari-
able outline-regexp. Any line whose beginning has a match for this regexp is con-
sidered a heading line. Matches that start within a line (not at the beginning) do not
count. The length of the matching text determines the level of the heading; longer matches
make a more deeply nested level. Thus, for example, if a text formatter has commands
‘Qchapter’, ‘@section’ and ‘@subsection’ to divide the document into chapters and sec-
tions, you can make those lines count as heading lines by setting outline-regexp to
‘"@chap\\|@\\ (sub\\)*section"’. Note the trick: the two words ‘chapter’ and ‘section’
are the same length, but by defining the regexp to match only ‘chap’ we ensure that the
length of the text matched on a chapter heading is shorter, so that Outline mode will know
that sections are contained in chapters. This works as long as no other command starts
with ‘@chap’.

Outline mode makes a line invisible by changing the newline before it into an ASCIIL
Control-M (code 015). Most editing commands that work on lines treat an invisible line as
part of the previous line because, strictly speaking, it is part of that line, since there is no
longer a newline in between. When you save the file in Outline mode, Control-M characters
are saved as newlines, so the invisible lines become ordinary lines in the file. Saving does
not change the visibility status of a line inside Emacs.

21.1.3.2 Outline Motion Commands

Some special commands in Outline mode move backward and forward to heading lines.
C-c C-n Move point to the next visible heading line (outline-next-visible-heading).

C-cC-p Move point to the previous visible heading line
(outline-previous-visible-heading).

C-c CA Move point to the next visible heading line at the same level as the one point
is on (outline-forward-same-level).

C-c C-b Move point to the previous visible heading line at the same level (outline-
backward-same-level).

C-c C-u Move point up to a lower-level (more inclusive) visible heading line (outline-
up-heading).

C-c C-n (next-visible-heading) moves down to the next heading line. C-c C-p
(previous-visible-heading) moves similarly backward. Both accept numeric arguments
as repeat counts. The names emphasize that invisible headings are skipped, but this is not
really a special feature. All editing commands that look for lines ignore the invisible lines
automatically.

More advanced motion commands understand the levels of headings. The commands
C-c Cf (outline-forward-same-level) and C-c C-b (outline-backward-same-level)

Chapter 21: Commands for Human Languages 175

move from one heading line to another visible heading at the same depth in the outline. C-c
C-u (outline-up-heading) moves backward to another heading that is less deeply nested.

21.1.3.3 Outline Visibility Commands

The other special commands of outline mode are used to make lines visible or invisible.
Their names all start with hide or show. Most of them exist as pairs of opposites. They
are not undoable; instead, you can undo right past them. Making lines visible or invisible
is simply not recorded by the undo mechanism.

M-x hide-body
Make all body lines in the buffer invisible.

M-x show-all
Make all lines in the buffer visible.

C-cC-d Make everything under this heading invisible, not including this heading itself
(hide-subtree).

C-c C-s Make everything under this heading visible, including body, subheadings, and
their bodies (show-subtree).

M-x hide-leaves
Make the body of this heading line, and of all its subheadings, invisible.

M-x show-branches
Make all subheadings of this heading line, at all levels, visible.

C-c C-i Make immediate subheadings (one level down) of this heading line visible (show-
children).

M-x hide-entry
Make this heading line’s body invisible.

M-x show-entry
Make this heading line’s body visible.

Two commands that are exact opposites are M-x hide-entry and M-x show-entry .
They are used with point on a heading line, and apply only to the body lines of that
heading. The subtopics and their bodies are not affected.

Two more powerful opposites are C-c C-h (hide-subtree) and C-c C-S (show-subtree).
Both should be used when point is on a heading line, and both apply to all the lines of that
heading’s subtree: its body, all its subheadings, both direct and indirect, and all of their
bodies. In other words, the subtree contains everything following this heading line, up to
and not including the next heading of the same or higher rank.

Intermediate between a visible subtree and an invisible one is having all the subheadings
visible but none of the body. There are two commands for doing this, one that hides the
bodies and one that makes the subheadings visible. They are M-x hide-leaves and M-x
show-branches.

A little weaker than show-branches is C-C C-i (show-children). It makes just the
direct subheadings visible—those one level down. Deeper subheadings remain invisible.

Two commands have a blanket effect on the whole file. M-x hide-body makes all body
lines invisible, so that you see just the outline structure. M-X show-all makes all lines

176 XEmacs User’s Manual

visible. You can think of these commands as a pair of opposites even though M-x show-all
applies to more than just body lines.

You can turn off the use of ellipses at the ends of visible lines by setting selective-
display-ellipses to nil. The result is no visible indication of the presence of invisible
lines.

21.2 Words

Emacs has commands for moving over or operating on words. By convention, the keys for
them are all Meta- characters.

M-f Move forward over a word (forward-word).
M-b Move backward over a word (backward-word).
M-d Kill up to the end of a word (kill-word).

M-DEL Kill back to the beginning of a word (backward-kill-word).
M-e Mark the end of the next word (mark-word).

M-t Transpose two words; drag a word forward or backward across other words
(transpose-words).

Notice how these keys form a series that parallels the character-based C-f, C-b, C-d, C-t
and DELi. M-@ is related to C-@, which is an alias for C-tsPdi.

The commands Meta-f (forward-word) and Meta-b (backward-word) move forward
and backward over words. They are analogous to Control-f and Control-b , which move
over single characters. Like their Control- analogues, Meta-f and Meta-b move several
words if given an argument. Meta-f with a negative argument moves backward, and Meta-
b with a negative argument moves forward. Forward motion stops after the last letter of
the word, while backward motion stops before the first letter.

Meta-d (kill-word) kills the word after point. To be precise, it kills everything from
point to the place Meta-f would move to. Thus, if point is in the middle of a word, Meta-d
kills just the part after point. If some punctuation comes between point and the next word,
it is killed along with the word. (To kill only the next word but not the punctuation before
it, simply type Meta-f to get to the end and kill the word backwards with Meta-DEL.)
Meta-d takes arguments just like Meta-f .

Meta-IDELI (backward-kill-word) kills the word before point. It kills everything from
point back to where Meta-b would move to. If point is after the space in ‘FO0, BAR’, then
‘FO0, ’ is killed. To kill just ‘FO0’, type Meta-b Meta-d instead of Meta-DEL.

Meta-t (transpose-words) exchanges the word before or containing point with the fol-
lowing word. The delimiter characters between the words do not move. For example, trans-
posing ‘FO0, BAR’ results in ‘BAR, FOO’ rather than ‘BAR F0O,’. See Section 14.2 [Transpose],
page 109, for more on transposition and on arguments to transposition commands.

To operate on the next N words with an operation which applies between point and
mark, you can either set the mark at point and then move over the words, or you can use
the command Meta-@ (mark-word) which does not move point but sets the mark where
Meta-f would move to. It can be given arguments just like Meta-f .

Chapter 21: Commands for Human Languages 177

The word commands’ understanding of syntax is completely controlled by the syntax
table. For example, any character can be declared to be a word delimiter. See Section 29.6
[Syntax], page 298.

21.3 Sentences

The Emacs commands for manipulating sentences and paragraphs are mostly on Meta-
keys, and therefore are like the word-handling commands.

M-a Move back to the beginning of the sentence (backward-sentence).
M-e Move forward to the end of the sentence (forward-sentence).
M-k Kill forward to the end of the sentence (kill-sentence).

C-x bEL Kill back to the beginning of the sentence
(backward-kill-sentence).

The commands Meta-a and Meta-e (backward-sentence and forward-sentence) move
to the beginning and end of the current sentence, respectively. They resemble Control-a
and Control-e , which move to the beginning and end of a line. Unlike their counterparts,
Meta-a and Meta-e move over successive sentences if repeated or given numeric arguments.
Emacs assumes the typist’s convention is followed, and thus considers a sentence to end
wherever there is a ‘.7, ‘7?7, or ‘!’ followed by the end of a line or two spaces, with any
number of)’, ‘1’ 27 or ‘"’ characters allowed in between. A sentence also begins or ends
wherever a paragraph begins or ends.

Neither M-anor M-e moves past the newline or spaces beyond the sentence edge at which
it is stopping.

M-a and M-e have a corresponding kill command, just like C-a and C-e have C-k. The
command is M-k (kill-sentence) which kills from point to the end of the sentence. With
minus one as an argument it kills back to the beginning of the sentence. Larger arguments
serve as repeat counts.

There is a special command, C-x DEL (backward-kill-sentence), for killing back to
the beginning of a sentence, which is useful when you change your mind in the middle of
composing text.

The variable sentence-end controls recognition of the end of a sentence. It is a regexp
that matches the last few characters of a sentence, together with the whitespace following
the sentence. Its normal value is:

LT ON" DTN N\ \\D) [\t\n]*"

This example is explained in the section on regexps. See Section 13.5 [Regexps], page 99.

21.4 Paragraphs
The Emacs commands for manipulating paragraphs are also Meta- keys.

M-[Move back to previous paragraph beginning
(backward-paragraph).

M-] Move forward to next paragraph end (forward-paragraph).
M-h Put point and mark around this or next paragraph (mark-paragraph).

178 XEmacs User’s Manual

Meta-[moves to the beginning of the current or previous paragraph, while Meta-] moves
to the end of the current or next paragraph. Blank lines and text formatter command lines
separate paragraphs and are not part of any paragraph. An indented line starts a new
paragraph.

In major modes for programs (as opposed to Text mode), paragraphs begin and end only
at blank lines. As a result, the paragraph commands continue to be useful even though
there are no paragraphs per se.

When there is a fill prefix, paragraphs are delimited by all lines which don’t start with
the fill prefix. See Section 21.6 [Filling], page 179.

To operate on a paragraph, you can use the command Meta-h (mark-paragraph) to set
the region around it. This command puts point at the beginning and mark at the end of
the paragraph point was in. If point is between paragraphs (in a run of blank lines or at
a boundary), the paragraph following point is surrounded by point and mark. If there are
blank lines preceding the first line of the paragraph, one of the blank lines is included in
the region. Thus, for example, M-h C-wkills the paragraph around or after point.

The precise definition of a paragraph boundary is controlled by the variables paragraph-
separate and paragraph-start. The value of paragraph-start is a regexp that matches
any line that either starts or separates paragraphs. The value of paragraph-separate
is another regexp that matches only lines that separate paragraphs without being part of
any paragraph. Lines that start a new paragraph and are contained in it must match
both regexps. For example, normally paragraph-start is "~ [\t\n\f]" and paragraph-
separate is "“ [\t\f]*$".

Normally it is desirable for page boundaries to separate paragraphs. The default values
of these variables recognize the usual separator for pages.

21.5 Pages

Files are often thought of as divided into pagesby the formfeed character (ASCIT Control-1,,
octal code 014). For example, if a file is printed on a line printer, each “page” of the file
starts on a new page of paper. Emacs treats a page-separator character just like any other
character. It can be inserted with C-q C-I or deleted with IDELI. You are free to paginate
your file or not. However, since pages are often meaningful divisions of the file, commands
are provided to move over them and operate on them.

Cx| Move point to previous page boundary (backward-page).

C-x] Move point to next page boundary (forward-page).

C-x C-p Put point and mark around this page (or another page) (mark-page).
C-x | Count the lines in this page (count-lines-page).

The C-x [(backward-page) command moves point to immediately after the previous
page delimiter. If point is already right after a page delimiter, the command skips that one
and stops at the previous one. A numeric argument serves as a repeat count. The C-X]
(forward-page) command moves forward past the next page delimiter.

The C-x C-p command (mark-page) puts point at the beginning of the current page and
the mark at the end. The page delimiter at the end is included (the mark follows it). The
page delimiter at the front is excluded (point follows it). You can follow this command by

Chapter 21: Commands for Human Languages 179

C-wto kill a page you want to move elsewhere. If you insert the page after a page delimiter,
at a place where C-x] or C-x [would take you, the page will be properly delimited before
and after once again.

A numeric argument to C-x C-p is used to specify which page to go to, relative to the
current one. Zero means the current page. One means the next page, and —1 means the
previous one.

The C-x | command (count-lines-page) can help you decide where to break a page in
two. It prints the total number of lines in the current page in the echo area, then divides
the lines into those preceding the current line and those following it, for example

Page has 96 (72+25) lines
Notice that the sum is off by one; this is correct if point is not at the beginning of a line.

The variable page-delimiter should have as its value a regexp that matches the begin-
ning of a line that separates pages. This defines where pages begin. The normal value of
this variable is "~\f", which matches a formfeed character at the beginning of a line.

21.6 Filling Text

If you use Auto Fill mode, Emacs lIs text (breaks it up into lines that fit in a specified
width) as you insert it. When you alter existing text it is often no longer be properly filled
afterwards and you can use explicit commands for filling.

21.6.1 Auto Fill Mode

Auto Fill mode is a minor mode in which lines are broken automatically when they become
too wide. Breaking happens only when you type a IsPCi or RET.

M-x auto-fill-mode
Enable or disable Auto Fill mode.

e
RETI In Auto Fill mode, break lines when appropriate.

M-x auto-fill-mode turns Auto Fill mode on if it was off, or off if it was on. With
a positive numeric argument the command always turns Auto Fill mode on, and with a
negative argument it always turns it off. The presence of the word ‘Fill’ in the mode line,
inside the parentheses, indicates that Auto Fill mode is in effect. Auto Fill mode is a minor
mode; you can turn it on or off for each buffer individually. See Section 29.1 [Minor Modes],
page 281.

In Auto Fill mode, lines are broken automatically at spaces when they get longer than
desired. Line breaking and rearrangement takes place only when you type ISPCi or 'RET.
To insert a space or newline without permitting line-breaking, type C-g I8PCi or C-q ILFDi
(recall that a newline is really a linefeed). C-0 inserts a newline without line breaking.

Auto Fill mode works well with Lisp mode: when it makes a new line in Lisp mode,
it indents that line with HrABi. If a line ending in a Lisp comment gets too long, the text
of the comment is split into two comment lines. Optionally, new comment delimiters are
inserted at the end of the first line and the beginning of the second, so that each line is a
separate comment. The variable comment-multi-1line controls the choice (see Section 22.6
[Comments], page 191).

180 XEmacs User’s Manual

Auto Fill mode does not refill entire paragraphs. It can break lines but cannot merge
lines. Editing in the middle of a paragraph can result in a paragraph that is not correctly
filled. The easiest way to make the paragraph properly filled again is using an explicit fill
commands.

Many users like Auto Fill mode and want to use it in all text files. The section on init
files explains how you can arrange this permanently for yourself. See Section 29.7 [Init File],
page 300.

21.6.2 Explicit Fill Commands

M-q Fill current paragraph (fill-paragraph).
M-g Fill each paragraph in the region (fill-region).
C-xf Set the fill column (set-fill-column).

M-x fill-region-as-paragraph
Fill the region, considering it as one paragraph.

M-s Center a line.

To refill a paragraph, use the command Meta-q (fill-paragraph). It causes the para-
graph containing point, or the one after point if point is between paragraphs, to be refilled.
All line breaks are removed, and new ones are inserted where necessary. M-gcan be undone
with C-_. See Chapter 5 [Undo], page 53.

To refill many paragraphs, use M-g (fill-region), which divides the region into para-
graphs and fills each of them.

Meta-g and Meta-g use the same criteria as Meta-h for finding paragraph boundaries
(see Section 21.4 [Paragraphs|, page 177). For more control, you can use M-x fill-region-
as-paragraph , which refills everything between point and mark. This command recognizes
only blank lines as paragraph separators.

A numeric argument to M-gor M- causes it to justify the text as well as filling it. Extra
spaces are inserted to make the right margin line up exactly at the fill column. To remove
the extra spaces, use M-qor M-g with no argument.

The variable auto-fill-inhibit-regexp takes as a value a regexp to match lines that
should not be auto-filled.

The command Meta-s (center-line) centers the current line within the current fill
column. With an argument, it centers several lines individually and moves past them.

The maximum line width for filling is in the variable £ill-column. Altering the value
of £i1ll-column makes it local to the current buffer; until then, the default value—initially
70—is in effect. See Section 29.3.4 [Locals|, page 288.

The easiest way to set £ill-column is to use the command C-X f (set-fill-column).
With no argument, it sets £ill-column to the current horizontal position of point. With a
numeric argument, it uses that number as the new fill column.

21.6.3 The Fill Pre x

To fill a paragraph in which each line starts with a special marker (which might be a few
spaces, giving an indented paragraph), use the Il pre X feature. The fill prefix is a string
which is not included in filling. Emacs expects every line to start with a fill prefix.

Chapter 21: Commands for Human Languages 181

C-x. Set the fill prefix (set-fill-prefix).
M-q Fill a paragraph using current fill prefix (fill-paragraph).

M-x fill-individual-paragraphs
Fill the region, considering each change of indentation as starting a new para-
graph.

To specify a fill prefix, move to a line that starts with the desired prefix, put point at
the end of the prefix, and give the command C-x . (set-fill-prefix). That’s a period
after the C-x. To turn off the fill prefix, specify an empty prefix: type C-x . with point at
the beginning of a line.

When a fill prefix is in effect, the fill commands remove the fill prefix from each line
before filling and insert it on each line after filling. Auto Fill mode also inserts the fill prefix
inserted on new lines it creates. Lines that do not start with the fill prefix are considered to
start paragraphs, both in M-gqand the paragraph commands; this is just right if you are using
paragraphs with hanging indentation (every line indented except the first one). Lines which
are blank or indented once the prefix is removed also separate or start paragraphs; this is
what you want if you are writing multi-paragraph comments with a comment delimiter on
each line.

The fill prefix is stored in the variable fill-prefix. Its value is a string, or nil when
there is no fill prefix. This is a per-buffer variable; altering the variable affects only the
current buffer, but there is a default value which you can change as well. See Section 29.3.4
[Locals], page 288.

Another way to use fill prefixes is through M-x fill-individual-paragraphs . This
function divides the region into groups of consecutive lines with the same amount and kind
of indentation and fills each group as a paragraph, using its indentation as a fill prefix.

21.7 Case Conversion Commands

Emacs has commands for converting either a single word or any arbitrary range of text to
upper case or to lower case.

M-I Convert following word to lower case (downcase-word).
M-u Convert following word to upper case (upcase-word).
M-c Capitalize the following word (capitalize-word).

C-x C-l Convert region to lower case (downcase-region).

C-x C-u Convert region to upper case (upcase-region).

The word conversion commands are used most frequently. Meta-l (downcase-word)
converts the word after point to lower case, moving past it. Thus, repeating Meta-l converts
successive words. Meta-u (upcase-word) converts to all capitals instead, while Meta-c
(capitalize-word) puts the first letter of the word into upper case and the rest into lower
case. The word conversion commands convert several words at once if given an argument.
They are especially convenient for converting a large amount of text from all upper case
to mixed case: you can move through the text using M-I, M-u or M-C on each word as
appropriate, occasionally using M-f instead to skip a word.

182 XEmacs User’s Manual

When given a negative argument, the word case conversion commands apply to the
appropriate number of words before point, but do not move point. This is convenient when
you have just typed a word in the wrong case: you can give the case conversion command
and continue typing.

If a word case conversion command is given in the middle of a word, it applies only to
the part of the word which follows point. This is just like what Meta-d (kill-word) does.
With a negative argument, case conversion applies only to the part of the word before point.

The other case conversion commands are C-X C-u (upcase-region) and C-x C-I
(downcase-region), which convert everything between point and mark to the specified
case. Point and mark do not move.

Chapter 22: Editing Programs 183

22 Editing Programs

Emacs has many commands designed to understand the syntax of programming languages
such as Lisp and C. These commands can:

e Move over or kill balanced expressions or Sexps(see Section 22.2 [Lists], page 184).
e Move over or mark top-level balanced expressions (defuns in Lisp; functions, in C).
e Show how parentheses balance (see Section 22.5 [Matching], page 191).
o Insert, kill, or align comments (see Section 22.6 [Comments|, page 191).

e Follow the usual indentation conventions of the language (see Section 22.4 [Grinding],
page 186).

The commands available for words, sentences, and paragraphs are useful in editing code
even though their canonical application is for editing human language text. Most symbols
contain words (see Section 21.2 [Words|, page 176); sentences can be found in strings and
comments (see Section 21.3 [Sentences|, page 177). Paragraphs per se are not present in
code, but the paragraph commands are useful anyway, because Lisp mode and C mode
define paragraphs to begin and end at blank lines (see Section 21.4 [Paragraphs], page 177).
Judicious use of blank lines to make the program clearer also provides interesting chunks of
text for the paragraph commands to work on.

The selective display feature is useful for looking at the overall structure of a function
(see Section 12.3 [Selective Display], page 92). This feature causes only the lines that are
indented less than a specified amount to appear on the screen.

22.1 Major Modes for Programming Languages

Emacs has several major modes for the programming languages Lisp, Scheme (a variant
of Lisp), C, Fortran, and Muddle. Ideally, a major mode should be implemented for each
programming language you might want to edit with Emacs; but often the mode for one
language can serve for other syntactically similar languages. The language modes that exist
are those that someone decided to take the trouble to write.

There are several variants of Lisp mode, which differ in the way they interface to Lisp
execution. See Section 23.2 [Lisp Modes], page 210.

Each of the programming language modes defines the HTABi key to run an indentation
function that knows the indentation conventions of that language and updates the current
line’s indentation accordingly. For example, in C mode ITABi is bound to c-indent-1line.
fLFDi is normally defined to do RETI followed by HrABI; thus it, too, indents in a mode-specific
fashion.

In most programming languages, indentation is likely to vary from line to line. So the
major modes for those languages rebind DEL to treat a tab as if it were the equivalent
number of spaces (using the command backward-delete-char-untabify). This makes it
possible to rub out indentation one column at a time without worrying whether it is made
up of spaces or tabs. In these modes, use C-b C-d to delete a tab character before point.

Programming language modes define paragraphs to be separated only by blank lines, so
that the paragraph commands remain useful. Auto Fill mode, if enabled in a programming
language major mode, indents the new lines which it creates.

184 XEmacs User’s Manual

Turning on a major mode calls a user-supplied function called the mode hook which
is the value of a Lisp variable. For example, turning on C mode calls the value of the
variable c-mode-hook if that value exists and is non-nil. Mode hook variables for other
programming language modes include lisp-mode-hook, emacs-lisp-mode-hook, lisp-
interaction-mode-hook, scheme-mode-hook, and muddle-mode-hook. The mode hook
function receives no arguments.

22.2 Lists and Sexps

By convention, Emacs keys for dealing with balanced expressions are usually Control-
Meta- characters. They tend to be analogous in function to their Control- and Meta-
equivalents. These commands are usually thought of as pertaining to expressions in pro-
gramming languages, but can be useful with any language in which some sort of parentheses
exist (including English).

The commands fall into two classes. Some commands deal only with lists (parenthetical
groupings). They see nothing except parentheses, brackets, braces (depending on what
must balance in the language you are working with), and escape characters that might be
used to quote those.

The other commands deal with expressions or sexps The word ‘sexp’ is derived from
s-expression the term for a symbolic expression in Lisp. In Emacs, the notion of ‘sexp’ is
not limited to Lisp. It refers to an expression in the language your program is written in.
Each programming language has its own major mode, which customizes the syntax tables
so that expressions in that language count as sexps.

Sexps typically include symbols, numbers, and string constants, as well as anything
contained in parentheses, brackets, or braces.

In languages that use prefix and infix operators, such as C, it is not possible for all
expressions to be sexps. For example, C mode does not recognize ‘foo + bar’ as an sexp,
even though it s a C expression; it recognizes ‘foo’ as one sexp and ‘bar’ as another, with
the ‘+’ as punctuation between them. This is a fundamental ambiguity: both ‘foo + bar’
and ‘foo’ are legitimate choices for the sexp to move over if point is at the ‘f’. Note that
‘(foo + bar)’ is a sexp in C mode.

Some languages have obscure forms of syntax for expressions that nobody has bothered
to make Emacs understand properly.

C-M-f Move forward over an sexp (forward-sexp).
C-M-b Move backward over an sexp (backward-sexp).

C-M-k Kill sexp forward (kill-sexp).

C-M-u Move up and backward in list structure (backward-up-list).
C-M-d Move down and forward in list structure (down-list).

C-M-n Move forward over a list (forward-list).

C-M-p Move backward over a list (backward-list).

C-M-t Transpose expressions (transpose-sexps).

C-M-@ Put mark after following expression (mark-sexp).

Chapter 22: Editing Programs 185

To move forward over an sexp, use C-M-f (forward-sexp). If the first significant char-
acter after point is an opening delimiter (‘(’ in Lisp; ‘(’, ‘[’, or ‘{’ in C), C-M-f moves past
the matching closing delimiter. If the character begins a symbol, string, or number, C-M-f
moves over that. If the character after point is a closing delimiter, C-M-f just moves past
it. (This last is not really moving across an sexp; it is an exception which is included in
the definition of C-M-f because it is as useful a behavior as anyone can think of for that
situation.)

The command C-M-b (backward-sexp) moves backward over a sexp. The detailed rules
are like those above for C-M-f, but with directions reversed. If there are any prefix characters
(single quote, back quote, and comma, in Lisp) preceding the sexp, C-M-b moves back over
them as well.

C-M-f or C-M-bwith an argument repeats that operation the specified number of times;
with a negative argument, it moves in the opposite direction.

In languages such as C where the comment-terminator can be recognized, the sexp com-
mands move across comments as if they were whitespace. In Lisp and other languages where
comments run until the end of a line, it is very difficult to ignore comments when parsing
backwards; therefore, in such languages the sexp commands treat the text of comments as
if it were code.

Killing an sexp at a time can be done with C-M-k (kill-sexp). C-M-kkills the characters
that C-M-f would move over.

The list commands C-M-n (forward-1ist) and C-M-p(backward-1ist), move over lists
like the sexp commands but skip over any number of other kinds of sexps (symbols, strings,
etc). In some situations, these commands are useful because they usually ignore comments,
since the comments usually do not contain any lists.

C-M-nand C-M-pstay at the same level in parentheses, when that is possible. To move
up one (or n) levels, use C-M-u (backward-up-1list). C-M-umoves backward up past one
unmatched opening delimiter. A positive argument serves as a repeat count; a negative
argument reverses direction of motion and also requests repetition, so it moves forward and
up one or more levels.

To move down in list structure, use C-M-d (down-1ist). In Lisp mode, where ‘(’ is the
only opening delimiter, this is nearly the same as searching for a ‘(". An argument specifies
the number of levels of parentheses to go down.

C-M-t (transpose-sexps) drags the previous sexp across the next one. An argument
serves as a repeat count, and a negative argument drags backwards (thus canceling out the
effect of C-M-t with a positive argument). An argument of zero, rather than doing nothing,
transposes the sexps ending after point and the mark.

To make the region be the next sexp in the buffer, use C-M-@ (mark-sexp) which sets
the mark at the same place that C-M-f would move to. C-M-@ takes arguments like C-M-f.
In particular, a negative argument is useful for putting the mark at the beginning of the
previous sexp.

The list and sexp commands’ understanding of syntax is completely controlled by the
syntax table. Any character can, for example, be declared to be an opening delimiter and
act like an open parenthesis. See Section 29.6 [Syntax], page 298.

186 XEmacs User’s Manual

22.3 Defuns

In Emacs, a parenthetical grouping at the top level in the buffer is called a defun. The
name derives from the fact that most top-level lists in Lisp are instances of the special form
defun, but Emacs calls any top-level parenthetical grouping counts a defun regardless of its
contents or the programming language. For example, in C, the body of a function definition
is a defun.

C-M-a Move to beginning of current or preceding defun (beginning-of-defun).
C-M-e Move to end of current or following defun (end-of-defun).
C-M-h Put region around whole current or following defun (mark-defun).

The commands to move to the beginning and end of the current defun are C-M-a
(beginning-of-defun) and C-M-e (end-of-defun).

To operate on the current defun, use C-M-h (mark-defun) which puts point at the
beginning and the mark at the end of the current or next defun. This is the easiest way
to prepare for moving the defun to a different place. In C mode, C-M-h runs the function
mark-c-function, which is almost the same as mark-defun, but which backs up over the
argument declarations, function name, and returned data type so that the entire C function
is inside the region.

To compile and evaluate the current defun, use M-x compile-defun . This function prints
the results in the minibuffer. If you include an argument, it inserts the value in the current
buffer after the defun.

Emacs assumes that any open-parenthesis found in the leftmost column is the start of
a defun. Therefore, never put an open-parenthesis at the left margin in a Lisp file unless
it is the start of a top level list. Never put an open-brace or other opening delimiter at the
beginning of a line of C code unless it starts the body of a function. The most likely problem
case is when you want an opening delimiter at the start of a line inside a string. To avoid
trouble, put an escape character (‘\’ in C and Emacs Lisp, /’ in some other Lisp dialects)
before the opening delimiter. It will not affect the contents of the string.

The original Emacs found defuns by moving upward a level of parentheses until there
were no more levels to go up. This required scanning back to the beginning of the buffer
for every function. To speed this up, Emacs was changed to assume that any ‘(’ (or other
character assigned the syntactic class of opening-delimiter) at the left margin is the start of a
defun. This heuristic is nearly always right; however, it mandates the convention described
above.

22.4 Indentation for Programs

The best way to keep a program properly indented (“ground”) is to use Emacs to re-indent
it as you change the program. Emacs has commands to indent properly either a single line,
a specified number of lines, or all of the lines inside a single parenthetical grouping.

22.4.1 Basic Program Indentation Commands
HCABI Adjust indentation of current line.

HFDI Equivalent to IRETi followed by HTABi (newline-and-indent).

Chapter 22: Editing Programs 187

The basic indentation command is MTABi, which gives the current line the correct inden-
tation as determined from the previous lines. The function that HTABi runs depends on the
major mode; it is 1isp-indent-1line in Lisp mode, c-indent-1ine in C mode, etc. These
functions understand different syntaxes for different languages, but they all do about the
same thing. MrABI in any programming language major mode inserts or deletes whitespace at
the beginning of the current line, independent of where point is in the line. If point is inside
the whitespace at the beginning of the line, HTABi leaves it at the end of that whitespace;
otherwise, TABI leaves point fixed with respect to the characters around it.

Use C-q hrABi to insert a tab at point.

When entering a large amount of new code, use LFDI (newline-and-indent), which
is equivalent to a RETI followed by a HFABi. FDi creates a blank line, then gives it the
appropriate indentation.

HrABI indents the second and following lines of the body of a parenthetical grouping each
under the preceding one; therefore, if you alter one line’s indentation to be nonstandard,
the lines below tend to follow it. This is the right behavior in cases where the standard
result of MTABI does not look good.

Remember that Emacs assumes that an open-parenthesis, open-brace, or other opening
delimiter at the left margin (including the indentation routines) is the start of a function.
You should therefore never have an opening delimiter in column zero that is not the be-
ginning of a function, not even inside a string. This restriction is vital for making the
indentation commands fast. See Section 22.3 [Defuns]|, page 186, for more information on
this behavior.

22.4.2 Indenting Several Lines

Several commands are available to re-indent several lines of code which have been altered
or moved to a different level in a list structure.

C-M-q Re-indent all the lines within one list (indent-sexp).
C-u HrABI Shift an entire list rigidly sideways so that its first line is properly indented.
C-M-\ Re-indent all lines in the region (indent-region).

To re-indent the contents of a single list, position point before the beginning of it and
type C-M-g This key is bound to indent-sexp in Lisp mode, indent-c-exp in C mode,
and bound to other suitable functions in other modes. The indentation of the line the sexp
starts on is not changed; therefore, only the relative indentation within the list, and not its
position, is changed. To correct the position as well, type a ITABi before C-M-q

If the relative indentation within a list is correct but the indentation of its beginning
is not, go to the line on which the list begins and type C-u FTABI. When you give HTABI a
numeric argument, it moves all the lines in the group, starting on the current line, sideways
the same amount that the current line moves. The command does not move lines that start
inside strings, or C preprocessor lines when in C mode.

Another way to specify a range to be re-indented is with point and mark. The command
C-M-\ (indent-region) applies HTABI to every line whose first character is between point
and mark.

188 XEmacs User’s Manual

22.4.3 Customizing Lisp Indentation

The indentation pattern for a Lisp expression can depend on the function called by the
expression. For each Lisp function, you can choose among several predefined patterns of
indentation, or define an arbitrary one with a Lisp program.

The standard pattern of indentation is as follows: the second line of the expression
is indented under the first argument, if that is on the same line as the beginning of the
expression; otherwise, the second line is indented underneath the function name. Each
following line is indented under the previous line whose nesting depth is the same.

If the variable 1isp-indent-offset is non-nil, it overrides the usual indentation pat-
tern for the second line of an expression, so that such lines are always indented lisp-
indent-offset more columns than the containing list.

Certain functions override the standard pattern. Functions whose names start with def
always indent the second line by lisp-body-indention extra columns beyond the open-
parenthesis starting the expression.

Individual functions can override the standard pattern in various ways, according to the
lisp-indent-function property of the function name. (Note: lisp-indent-function
was formerly called 1isp-indent-hook). There are four possibilities for this property:

nil This is the same as no property; the standard indentation pattern is used.
defun The pattern used for function names that start with def is used for this function
also.

a number, number
The first number arguments of the function are distinguished arguments; the
rest are considered the body of the expression. A line in the expression is
indented according to whether the first argument on it is distinguished or not.
If the argument is part of the body, the line is indented lisp-body-indent
more columns than the open-parenthesis starting the containing expression. If
the argument is distinguished and is either the first or second argument, it is
indented twice that many extra columns. If the argument is distinguished and
not the first or second argument, the standard pattern is followed for that line.

a symbol, symbol
symbol should be a function name; that function is called to calculate the in-
dentation of a line within this expression. The function receives two arguments:

state The value returned by parse-partial-sexp (a Lisp primitive for
indentation and nesting computation) when it parses up to the
beginning of this line.

pos The position at which the line being indented begins.

It should return either a number, which is the number of columns of indentation
for that line, or a list whose first element is such a number. The difference
between returning a number and returning a list is that a number says that all
following lines at the same nesting level should be indented just like this one; a
list says that following lines might call for different indentations. This makes a
difference when the indentation is computed by C-M-q if the value is a number,

Chapter 22: Editing Programs 189

C-M-q need not recalculate indentation for the following lines until the end of
the list.

22.4.4 Customizing C Indentation
Two variables control which commands perform C indentation and when.

If c-auto-newline is non-nil, newlines are inserted both before and after braces that
you insert and after colons and semicolons. Correct C indentation is done on all the lines
that are made this way.

If c-tab-always-indent is non-nil, the hrABi command in C mode does indentation
only if point is at the left margin or within the line’s indentation. If there is non-whitespace
to the left of point, ATABI just inserts a tab character in the buffer. Normally, this variable
is nil, and HMTABI always reindents the current line.

C does not have anything analogous to particular function names for which special forms
of indentation are desirable. However, it has a different need for customization facilities:
many different styles of C indentation are in common use.

There are six variables you can set to control the style that Emacs C mode will use.

c-indent-level
Indentation of C statements within surrounding block. The surrounding block’s
indentation is the indentation of the line on which the open-brace appears.

c-continued-statement-offset
Extra indentation given to a substatement, such as the then-clause of an if or
body of a while.

c-brace-offset
Extra indentation for lines that start with an open brace.

c-brace-imaginary-offset
An open brace following other text is treated as if it were this far to the right
of the start of its line.

c-argdecl-indent
Indentation level of declarations of C function arguments.

c-label-offset
Extra indentation for a line that is a label, case, or default.

The variable c-indent-level controls the indentation for C statements with respect to
the surrounding block. In the example:

{

foo O;
the difference in indentation between the lines is c-indent-level. Its standard value is 2.
If the open-brace beginning the compound statement is not at the beginning of its line,
the c-indent-level is added to the indentation of the line, not the column of the open-

brace. For example,
if (losing) {
do_this ();

190 XEmacs User’s Manual

One popular indentation style is that which results from setting c-indent-level to 8 and
putting open-braces at the end of a line in this way. Another popular style prefers to put
the open-brace on a separate line.

In fact, the value of the variable c-brace-imaginary-offset is also added to the in-
dentation of such a statement. Normally this variable is zero. Think of this variable as the
imaginary position of the open brace, relative to the first non-blank character on the line.
By setting the variable to 4 and c-indent-1level to 0, you can get this style:

if (x ==y) {
do_it O;
}

When c-indent-level is zero, the statements inside most braces line up exactly under
the open brace. An exception are braces in column zero, like those surrounding a function’s
body. The statements inside those braces are not placed at column zero. Instead, c-brace-
offset and c-continued-statement-offset (see below) are added to produce a typical
offset between brace levels, and the statements are indented that far.

c-continued-statement-offset controls the extra indentation for a line that starts
within a statement (but not within parentheses or brackets). These lines are usually state-
ments inside other statements, like the then-clauses of if statements and the bodies of while
statements. The c-continued-statement-offset parameter determines the difference in
indentation between the two lines in:
if (x == y)
do_it ;
The default value for c-continued-statement-offset is 2. Some popular indentation
styles correspond to a value of zero for c-continued-statement-offset.

c-brace-offset is the extra indentation given to a line that starts with an open-brace.
Its standard value is zero; compare:
if (x == vy)
{
with:
if (x == y)
do_it ;
If you set c-brace-offset to 4, the first example becomes:
if (x == y)
{
c-argdecl-indent controls the indentation of declarations of the arguments of a C
function. It is absolute: argument declarations receive exactly c-argdecl-indent spaces.
The standard value is 5 and results in code like this:

char =*

index (string, char)
char *string;
int char;

c-label-offset is the extra indentation given to a line that contains a label, a case
statement, or a default: statement. Its standard value is —2 and results in code like this:

Chapter 22: Editing Programs 191

switch (c)
{
case ’x’:
If c-label-offset were zero, the same code would be indented as:

switch (c¢)
{
case ’x’:
This example assumes that the other variables above also have their default values.

Using the indentation style produced by the default settings of the variables just dis-
cussed and putting open braces on separate lines produces clear and readable files. For an
example, look at any of the C source files of XEmagcs.

22.5 Automatic Display of Matching Parentheses

The Emacs parenthesis-matching feature shows you automatically how parentheses match
in the text. Whenever a self-inserting character that is a closing delimiter is typed, the
cursor moves momentarily to the location of the matching opening delimiter, provided that
is visible on the screen. If it is not on the screen, some text starting with that opening
delimiter is displayed in the echo area. Either way, you see the grouping you are closing off.

In Lisp, automatic matching applies only to parentheses. In C, it also applies to braces
and brackets. Emacs knows which characters to regard as matching delimiters based on the
syntax table set by the major mode. See Section 29.6 [Syntax], page 298.

If the opening delimiter and closing delimiter are mismatched—as in ‘[x)’—the echo
area displays a warning message. The correct matches are specified in the syntax table.

Two variables control parenthesis matching displays. blink-matching-paren turns the
feature on or off. The default is t (match display is on); nil turns it off. blink-matching-
paren-distance specifies how many characters back Emacs searches to find a matching
opening delimiter. If the match is not found in the specified region, scanning stops, and
nothing is displayed. This prevents wasting lots of time scanning when there is no match.
The default is 4000.

22.6 Manipulating Comments

The comment commands insert, kill and align comments.

M-; Insert or align comment (indent-for-comment).

C-x; Set comment column (set-comment-column).

C-u-C-x;
Kill comment on current line (kill-comment).

M-+LFDi Like IRETi followed by inserting and aligning a comment (indent-new-comment-
line).

The command that creates a comment is Meta-; (indent-for-comment). If there is no
comment already on the line, a new comment is created and aligned at a specific column
called the comment column Emacs creates the comment by inserting the string at the value
of comment-start; see below. Point is left after that string. If the text of the line extends

192 XEmacs User’s Manual

past the comment column, indentation is done to a suitable boundary (usually, at least one
space is inserted). If the major mode has specified a string to terminate comments, that
string is inserted after point, to keep the syntax valid.

You can also use Meta-; to align an existing comment. If a line already contains the
string that starts comments, M-; just moves point after it and re-indents it to the conven-
tional place. Exception: comments starting in column 0 are not moved.

Some major modes have special rules for indenting certain kinds of comments in certain
contexts. For example, in Lisp code, comments which start with two semicolons are indented
as if they were lines of code, instead of at the comment column. Comments which start
with three semicolons are supposed to start at the left margin. Emacs understands these
conventions by indenting a double-semicolon comment using hrABI and by not changing the
indentation of a triple-semicolon comment at all.

;3 This function is just an example.
;33 Here either two or three semicolons are appropriate.
(defun foo (x)
;35 And now, the first part of the function:
;3 The following line adds one.
(1+ %)) ; This line adds one.

In C code, a comment preceded on its line by nothing but whitespace is indented like a

line of code.

Even when an existing comment is properly aligned, M-; is still useful for moving directly
to the start of the comment.

C-u - C-x; (kill-comment) kills the comment on the current line, if there is one. The
indentation before the start of the comment is killed as well. If there does not appear to be
a comment in the line, nothing happens. To reinsert the comment on another line, move to
the end of that line, type first C-y, and then M-; to realign the comment. Note that C-u
- C-x ; is not a distinct key; it is C-X ; (set-comment-column) with a negative argument.
That command is programmed to call kill-comment when called with a negative argument.
However, kill-comment is a valid command which you could bind directly to a key if you
wanted to.

22.6.1 Multiple Lines of Comments

If you are typing a comment and want to continue it on another line, use the command
Meta-ILFDi (indent-new-comment-line), which terminates the comment you are typing,
creates a new blank line afterward, and begins a new comment indented under the old
one. If Auto Fill mode is on and you go past the fill column while typing, the comment is
continued in just this fashion. If point is not at the end of the line when you type M+LFDI,
the text on the rest of the line becomes part of the new comment line.

22.6.2 Options Controlling Comments

The comment column is stored in the variable comment-column. You can explicitly set it
to a number. Alternatively, the command C-X ; (set-comment-column) sets the comment
column to the column point is at. C-u C-X; sets the comment column to match the
last comment before point in the buffer, and then calls Meta-; to align the current line’s
comment under the previous one. Note that C-u - C-X ; runs the function kill-comment
as described above.

Chapter 22: Editing Programs 193

comment-column is a per-buffer variable; altering the variable affects only the current
buffer. You can also change the default value. See Section 29.3.4 [Locals], page 288. Many
major modes initialize this variable for the current buffer.

The comment commands recognize comments based on the regular expression that is the
value of the variable comment-start-skip. This regexp should not match the null string.
It may match more than the comment starting delimiter in the strictest sense of the word;
for example, in C mode the value of the variable is "/*+ *" which matches extra stars
and spaces after the ‘/*’ itself. (Note that ‘\\’ is needed in Lisp syntax to include a ‘\” in
the string, which is needed to deny the first star its special meaning in regexp syntax. See
Section 13.5 [Regexps], page 99.)

When a comment command makes a new comment, it inserts the value of comment-
start to begin it. The value of comment-end is inserted after point and will follow the
text you will insert into the comment. In C mode, comment-start has the value "/* " and
comment-end has the value " */".

comment-multi-line controls how M4LFDi (indent-new-comment-line) behaves when
used inside a comment. If comment-multi-line is nil, as it normally is, then M-LFDi
terminates the comment on the starting line and starts a new comment on the new following
line. If comment-multi-line is not nil, then M4LFDI sets up the new following line as part
of the same comment that was found on the starting line. This is done by not inserting a
terminator on the old line and not inserting a starter on the new line. In languages where
multi-line comments are legal, the value you choose for this variable is a matter of taste.

The variable comment-indent-hook should contain a function that is called to compute
the indentation for a newly inserted comment or for aligning an existing comment. Major
modes set this variable differently. The function is called with no arguments, but with point
at the beginning of the comment, or at the end of a line if a new comment is to be inserted.
The function should return the column in which the comment ought to start. For example,
in Lisp mode, the indent hook function bases its decision on the number of semicolons that
begin an existing comment and on the code in the preceding lines.

22.7 Editing Without Unbalanced Parentheses

M-(Put parentheses around next sexp(s) (insert-parentheses).
M-) Move past next close parenthesis and re-indent (move-over-close-and-
reindent).

The commands M-((insert-parentheses) and M-) (move-over-close-and-reindent)
are designed to facilitate a style of editing which keeps parentheses balanced at all times.
M-(inserts a pair of parentheses, either together as in ‘()’, or, if given an argument, around
the next several sexps, and leaves point after the open parenthesis. Instead of typing (F O O
), you can type M-(F O Qwhich has the same effect except for leaving the cursor before the
close parenthesis. You can then type M-), which moves past the close parenthesis, deletes
any indentation preceding it (in this example there is none), and indents with fLFDi after it.

22.8 Completion for Lisp Symbols

Completion usually happens in the minibuffer. An exception is completion for Lisp symbol
names, which is available in all buffers.

194 XEmacs User’s Manual

The command M4TABI (lisp-complete-symbol) takes the partial Lisp symbol before
point to be an abbreviation, and compares it against all non-trivial Lisp symbols currently
known to Emacs. Any additional characters that they all have in common are inserted at
point. Non-trivial symbols are those that have function definitions, values, or properties.

If there is an open-parenthesis immediately before the beginning of the partial symbol,
only symbols with function definitions are considered as completions.

If the partial name in the buffer has more than one possible completion and they have no
additional characters in common, a list of all possible completions is displayed in another
window.

22.9 Documentation Commands

As you edit Lisp code to be run in Emacs, you can use the commands C-h f (describe-
function) and C-h v (describe-variable) to print documentation of functions and vari-
ables you want to call. These commands use the minibuffer to read the name of a function
or variable to document, and display the documentation in a window.

For extra convenience, these commands provide default arguments based on the code in
the neighborhood of point. C-h f sets the default to the function called in the innermost list
containing point. C-h v uses the symbol name around or adjacent to point as its default.

The M-x manual-entry command gives you access to documentation on Unix commands,
system calls, and libraries. The command reads a topic as an argument, and displays
the Unix manual page for that topic. manual-entry always searches all 8 sections of the
manual and concatenates all the entries it finds. For example, the topic ‘termcap’ finds the
description of the termcap library from section 3, followed by the description of the termcap
data base from section 5.

22.10 Change Logs

The Emacs command M-x add-change-log-entry helps you keep a record of when and
why you have changed a program. It assumes that you have a file in which you write a
chronological sequence of entries describing individual changes. The default is to store the
change entries in a file called ‘ChangeLog’ in the same directory as the file you are editing.
The same ‘ChangeLog’ file therefore records changes for all the files in a directory.

A change log entry starts with a header line that contains your name and the current
date. Except for these header lines, every line in the change log starts with a tab. One
entry can describe several changes; each change starts with a line starting with a tab and a
star. M-x add-change-log-entry visits the change log file and creates a new entry unless
the most recent entry is for today’s date and your name. In either case, it adds a new line
to start the description of another change just after the header line of the entry. When M-x
add-change-log-entry is finished, all is prepared for you to edit in the description of what
you changed and how. You must then save the change log file yourself.

The change log file is always visited in Indented Text mode, which means that lLFDi and
auto-filling indent each new line like the previous line. This is convenient for entering the
contents of an entry, which must be indented. See Section 21.1 [Text Mode], page 169.

Here is an example of the formatting conventions used in the change log for Emacs:
Wed Jun 26 19:29:32 1985 Richard M. Stallman (rms at mit-prep)

Chapter 22: Editing Programs 195

* xdisp.c (try_window_id):

If C-k is done at end of next-to-last line,

this fn updates window_end_vpos and cannot leave
window_end_pos nonnegative (it is zero, in fact).

If display is preempted before lines are output,

this is inconsistent. Fix by setting
blank_end_of_window to nonzero.

Tue Jun 25 05:25:33 1985 Richard M. Stallman (rms at mit-prep)

* cmds.c (Fnewline):
Call the auto fill hook if appropriate.

* xdisp.c (try_window_id):

If point is found by compute_motion after xp, record that
permanently. If display_text_line sets point position wrong
(case where line is killed, point is at eob and that line is
not displayed), set it again in final compute_motion.

22.11 Tags Tables

A tags table is a description of how a multi-file program is broken up into files. It lists the
names of the component files and the names and positions of the functions (or other named
subunits) in each file. Grouping the related files makes it possible to search or replace
through all the files with one command. Recording the function names and positions makes
possible the M-. command which finds the definition of a function by looking up which of
the files it is in.

Tags tables are stored in files called tags table les. The conventional name for a tags
table file is ‘TAGS’.

Each entry in the tags table records the name of one tag, the name of the file that the
tag is defined in (implicitly), and the position in that file of the tag’s definition.

Just what names from the described files are recorded in the tags table depends on
the programming language of the described file. They normally include all functions and
subroutines, and may also include global variables, data types, and anything else convenient.
Each name recorded is called a tag.

The Ebrowse is a separate facility tailored for C++, with tags and a class browser. See
section “Ebrowse” in Ebrowse User's Manual

22.11.1 Source File Tag Syntax

Here is how tag syntax is defined for the most popular languages:

e In C code, any C function or typedefis a tag, and so are definitions of struct, union and
enum. You can tag function declarations and external variables in addition to function
definitions by giving the ‘--declarations’ option to etags. #define macro definitions
and enum constants are also tags, unless you specify ‘--no-defines’ when making the
tags table. Similarly, global variables are tags, unless you specify ‘--no-globals’. Use
of ‘--no-globals’ and ‘--no-defines’ can make the tags table file much smaller.

e In C++ code, in addition to all the tag constructs of C code, member functions
are also recognized, and optionally member variables if you use the ‘--members’

196 XEmacs User’s Manual

option. Tags for variables and functions in classes are named ‘class ::variable ’ and

‘class ::function ’. operator functions tags are named, for example ‘operator+’.

e In Java code, tags include all the constructs recognized in C++, plus the interface,
extends and implements constructs. Tags for variables and functions in classes are
named ‘class .variable ’and ‘class .function ’.

e In LaTgX text, the argument of any of the commands \chapter, \section,
\subsection, \subsubsection, \eqno, \label, \ref, \cite, \bibitem, \part,
\appendix, \entry, or \index, is a tag.

Other commands can make tags as well, if you specify them in the environment variable

TEXTAGS before invoking etags. The value of this environment variable should be a
colon-separated list of command names. For example,

TEXTAGS="def :newcommand :newenvironment"
export TEXTAGS

specifies (using Bourne shell syntax) that the commands ‘\def’, ‘\newcommand’ and
‘\newenvironment’ also define tags.

e In Lisp code, any function defined with defun, any variable defined with defvar or
defconst, and in general the first argument of any expression that starts with ‘(def’
in column zero, is a tag.

e In Scheme code, tags include anything defined with def or with a construct whose
name starts with ‘def’. They also include variables set with set! at top level in the
file.

Several other languages are also supported:

e In Ada code, functions, procedures, packages, tasks, and types are tags. Use the
‘--packages-only’ option to create tags for packages only.

With Ada, it is possible to have the same name used for different entity kinds (e.g. the
same name for a procedure and a function). Also, for things like packages, procedures
and functions, there is the spec (i.e. the interface) and the body (i.e. the implementa-
tion). To facilitate the choice to the user, a tag value is appended with a qualifier:

function /f
procedure /p

package spec
Is

package body

/b
type It
task /K

So, as an example, M-x find-tag bidule/b will go directly to the body of the package
bidule while M-x find-tag bidule will just search for any tag bidule.

e In assembler code, labels appearing at the beginning of a line, followed by a colon, are
tags.

Chapter 22: Editing Programs 197

e In Bison or Yacc input files, each rule defines as a tag the nonterminal it constructs.
The portions of the file that contain C code are parsed as C code.

e In Cobol code, tags are paragraph names; that is, any word starting in column 8 and
followed by a period.

e In Erlang code, the tags are the functions, records, and macros defined in the file.
e In Fortran code, functions, subroutines and blockdata are tags.
e In makefiles, targets are tags.

e In Objective C code, tags include Objective C definitions for classes, class categories,
methods, and protocols.

e In Pascal code, the tags are the functions and procedures defined in the file.

e In Perl code, the tags are the procedures defined by the sub, my and local keywords.
Use ‘--globals’ if you want to tag global variables.

4

e In PHP code, tags are functions, classes and defines. When using the ‘--members’

option, vars are tags too.
e In PostScript code, the tags are the functions.
e In Prolog code, tags are predicates and rules at the beginning of line.

e In Python code, def or class at the beginning of a line generate a tag.

You can also generate tags based on regexp matching (see Section 22.11.3 [Etags Reg-
exps], page 198) to handle other formats and languages.

22.11.2 Creating Tags Tables

The etags program is used to create a tags table file. It knows the syntax of several
languages, as described in the previous section. Here is how to run etags:
etags inputfiles

The etags program reads the specified files, and writes a tags table named ‘TAGS’ in the
current working directory. You can intermix compressed and plain text source file names.
etags knows about the most common compression formats, and does the right thing. So
you can compress all your source files and have etags look for compressed versions of its
file name arguments, if it does not find uncompressed versions. Under MS-DOS, etags also
looks for file names like ‘mycode.cgz’ if it is given ‘mycode.c’ on the command line and
‘mycode.c’ does not exist.

etags recognizes the language used in an input file based on its file name and contents.
You can specify the language with the ‘~-language=name option, described below.

If the tags table data become outdated due to changes in the files described in the table,
the way to update the tags table is the same way it was made in the first place. It is not
necessary to do this often.

If the tags table fails to record a tag, or records it for the wrong file, then Emacs cannot
possibly find its definition. However, if the position recorded in the tags table becomes
a little bit wrong (due to some editing in the file that the tag definition is in), the only
consequence is a slight delay in finding the tag. Even if the stored position is very wrong,
Emacs will still find the tag, but it must search the entire file for it.

So you should update a tags table when you define new tags that you want to have
listed, or when you move tag definitions from one file to another, or when changes become

198 XEmacs User’s Manual

substantial. Normally there is no need to update the tags table after each edit, or even
every day.

One tags table can effectively include another. Specify the included tags file name with
the ‘-—-include=file ’ option when creating the file that is to include it. The latter file
then acts as if it contained all the files specified in the included file, as well as the files it
directly contains.

If you specify the source files with relative file names when you run etags, the tags file
will contain file names relative to the directory where the tags file was initially written.
This way, you can move an entire directory tree containing both the tags file and the source
files, and the tags file will still refer correctly to the source files.

If you specify absolute file names as arguments to etags, then the tags file will contain
absolute file names. This way, the tags file will still refer to the same files even if you move
it, as long as the source files remain in the same place. Absolute file names start with ¢/’
or with ‘device :/’ on MS-DOS and MS-Windows.

When you want to make a tags table from a great number of files, you may have problems
listing them on the command line, because some systems have a limit on its length. The
simplest way to circumvent this limit is to tell etags to read the file names from its standard
input, by typing a dash in place of the file names, like this:

find . -name "*.[chCH]" -print | etags -

Use the option ‘--language=name to specify the language explicitly. You can intermix
these options with file names; each one applies to the file names that follow it. Specify
‘--language=auto’ to tell etags to resume guessing the language from the file names and
file contents. Specify ‘~-language=none’ to turn off language-specific processing entirely;
then etags recognizes tags by regexp matching alone (see Section 22.11.3 [Etags Regexps],
page 198).

‘etags --help’ prints the list of the languages etags knows, and the file name rules for
guessing the language. It also prints a list of all the available etags options, together with
a short explanation.

22.11.3 Etags Regexps

The ‘--regex’ option provides a general way of recognizing tags based on regexp matching.
You can freely intermix it with file names. Each ‘--regex’ option adds to the preceding
ones, and applies only to the following files. The syntax is:
--regex=/ tagregexp [/ nameregexp/

where tagregexpis used to match the lines to tag. It is always anchored, that is, it behaves
as if preceded by ‘7. If you want to account for indentation, just match any initial number
of blanks by beginning your regular expression with ‘[\t]#*’. In the regular expressions,
‘\” quotes the next character, and ‘\t’ stands for the tab character. Note that etags does
not handle the other C escape sequences for special characters.

The syntax of regular expressions in etags is the same as in Emacs, augmented with
the interval operator, which works as in grep and ed. The syntax of an interval operator is
A{mn\}’, and its meaning is to match the preceding expression at least m times and up
to N times.

You should not match more characters with tagregexp than that needed to recognize
what you want to tag. If the match is such that more characters than needed are unavoidably

Chapter 22: Editing Programs 199

matched by tagregexp (as will usually be the case), you should add a nameregexp to pick
out just the tag. This will enable Emacs to find tags more accurately and to do completion
on tag names more reliably. You can find some examples below.

¢ ‘

The option ‘--ignore-case-regex’ (or ‘-c’) is like ‘--regex’, except that the regular
expression provided will be matched without regard to case, which is appropriate for various
programming languages.

The ‘-R’ option deletes all the regexps defined with ‘~-regex’ options. It applies to the
file names following it, as you can see from the following example:

etags --regex=/ regl/ voo.doo --regex=/ reg2/ \
bar.ber -R --lang=lisp los.er
Here etags chooses the parsing language for ‘voo.doo’ and ‘bar.ber’ according to their
contents. etags also uses regl to recognize additional tags in ‘voo.doo’, and both regl
and reg2 to recognize additional tags in ‘bar.ber’. etags uses the Lisp tags rules, and no
regexp matching, to recognize tags in ‘los.er’.

A regular expression can be bound to a given language, by prepending it with ‘{lang}’.
When you do this, etags will use the regular expression only for files of that language.
‘etags ——help’ prints the list of languages recognised by etags. The following example
tags the DEFVAR macros in the Emacs source files. etags applies this regular expression to
C files only:

—regex="{c}/[*DEFVAR_[A-Z_ \t(+"\([""]+\)"/

This feature is particularly useful when storing a list of regular expressions in a file. The

following option syntax instructs etags to read two files of regular expressions. The regular

expressions contained in the second file are matched without regard to case.
--regex=@first-file --ignore-case-regex=@second-file

A regex file contains one regular expressions per line. Empty lines, and lines beginning with
space or tab are ignored. When the first character in a line is ‘Q’, etags assumes that the
rest of the line is the name of a file of regular expressions. This means that such files can
be nested. All the other lines are taken to be regular expressions. For example, one can
create a file called ‘emacs.tags’ with the following contents (the first line in the file is a
comment):
-- This is for GNU Emacs source files

{cH[W*DEFVAR_[A-Z_ \t(+"\([™]+\)"A\L/
and then use it like this:

etags --regex=@emacs.tags *.[ch] */*.[ch]

Here are some more examples. The regexps are quoted to protect them from shell

interpretation.

e Tag Octave files:
etags --language=none \
--regex="/[\t}*function.*=[\t]*\([* \J*\)[\tJ*(A\1/ \
--regex="l##ttkey \()N\L/' \
--regex="/[\t]*global[\t].*/' \
*m
Note that tags are not generated for scripts so that you have to add a line by yourself
of the form ‘###key <script-name>’ if you want to jump to it.

e Tag Tcl files:

200 XEmacs User’s Manual

etags --language=none --regex="/proc[\t]+\([* \t]+\AL1/" *.tcl
e Tag VHDL files:

--language=none \

--regex='/[\\(ARCHITECTURE\|CONFIGURATION\) +[* J* +OF/" \
--regex="[W'\(ATTRIBUTE\|[ENTITY\|FUNCTION\|PACKAGE\

\(BODY\)?\|PROCEDURE\|PROCESS\[TYPEV)[\t]+\([* \t(J+\)A3/"

22.11.4 Selecting a Tags Table

At any time Emacs has one selectedtags table, and all the commands for working with tags
tables use the selected one. To select a tags table, use the variable tag-table-alist.

The value of tag-table-alist is a list that determines which TAGS files should be active
for a given buffer. This is not really an association list, in that all elements are checked. The
car of each element of this list is a pattern against which the buffers file name is compared;
if it matches, then the cdr of the list should be the name of the tags table to use. If more
than one element of this list matches the buffers file name, all of the associated tags tables
are used. Earlier ones are searched first.

If the car of elements of this list are strings, they are treated as regular-expressions
against which the file is compared (like the auto-mode-alist). If they are not strings, they
are evaluated. If they evaluate to non-nil, the current buffer is considered to match.

If the cdr of the elements of this list are strings, they are assumed to name a tags file. If
they name a directory, the string ‘tags’ is appended to them to get the file name. If they
are not strings, they are evaluated and must return an appropriate string.

For example:

(setq tag-table-alist
>(("/usr/src/public/perl/" . "/usr/src/public/perl/perl-3.0/")
("\\.el$" . "/usr/local/emacs/src/")
("/jbw/gnu/" . "/usrlb/degree/stud/jbw/gnu/")
(" . "/usr/local/emacs/src/")

))

The example defines the tags table alist in the following way:
e Anything in the directory ‘/usr/src/public/perl/’ should use the ‘TAGS’ file
‘/usr/src/public/perl/perl-3.0/TAGS’.
e Files ending in ‘.el’ should use the ‘TAGS’ file ‘/usr/local/emacs/src/TAGS .

e Anything in or below the directory ‘/jbw/gnu/’ should use the ‘TAGS’ file
‘/usr15/degree/stud/jbw/gnu/TAGS’.

If you had a file called ‘/usr/jbw/foo.el’, it would use both ‘TAGS’ files,
‘/usr/local/emacs/src/TAGS’ and ‘/usril5/degree/stud/jbw/gnu/TAGS’ (in that order),
because it matches both patterns.

If the buffer-local variable buffer-tag-table is set, it names a tags table that is searched
before all others when find-tag is executed from this buffer.

If there is a file called ‘TAGS’ in the same directory as the file in question, then that tags
file will always be used as well (after the buffer-tag-table but before the tables specified
by this list).

Chapter 22: Editing Programs 201

If the variable tags-file-name is set, the ‘TAGS’ file it names will apply to all buffers
(for backwards compatibility.) It is searched first.

If the value of the variable tags-always-build-completion-table is t, the tags file
will always be added to the completion table without asking first, regardless of the size of
the tags file.

The function M-X visit-tags-table , is largely made obsolete by the variable tag-
table-alist, tells tags commands to use the tags table file le first. The le should be
the name of a file created with the etags program. A directory name is also acceptable; it
means the file ‘TAGS’ in that directory. The function only stores the file name you provide
in the variable tags-file-name. Emacs does not actually read in the tags table contents
until you try to use them. You can set the variable explicitly instead of using visit-tags-
table. The value of the variable tags-file-name is the name of the tags table used by
all buffers. This is for backward compatibility, and is largely supplanted by the variable
tag-table-alist.

22.11.5 Finding a Tag

The most important thing that a tags table enables you to do is to find the definition of a
specific tag.

M-. tag &optional other-window
Find first definition of tag (find-tag).

C-u M-. Find next alternate definition of last tag specified.

C-x 4 . tag
Find first definition of tag, but display it in another window (find-tag-other-
window).

M-. (find-tag) is the command to find the definition of a specified tag. It searches
through the tags table for that tag, as a string, then uses the tags table information to
determine the file in which the definition is used and the approximate character position
of the definition in the file. Then find-tag visits the file, moves point to the approximate
character position, and starts searching ever-increasing distances away for the text that
should appear at the beginning of the definition.

If an empty argument is given (by typing IRETi), the sexp in the buffer before or around
point is used as the name of the tag to find. See Section 22.2 [Lists], page 184, for information
on sexps.

The argument to find-tag need not be the whole tag name; it can be a substring of
a tag name. However, there can be many tag names containing the substring you specify.
Since find-tag works by searching the text of the tags table, it finds the first tag in the
table that the specified substring appears in. To find other tags that match the substring,
give find-tag a numeric argument, as in C-u M-.. This does not read a tag name, but
continues searching the tag table’s text for another tag containing the same substring last
used. If your keyboard has a real METAI key, M-0 M-. is an easier alternative to C-u M-..

If the optional second argument other-window is non-nil, it uses another window to
display the tag. Multiple active tags tables and completion are supported.

Variables of note include the following:

202 XEmacs User’s Manual

tag-table-alist
Controls which tables apply to which buffers.

tags-file-name
Stores a default tags table.

tags-build-completion-table
Controls completion behavior.

buffer-tag-table
Specifies a buffer-local table.

make-tags-files-invisible
Sets whether tags tables should be very hidden.

tag-mark-stack-max
Specifies how many tags-based hops to remember.

Like most commands that can switch buffers, find-tag has another similar command
that displays the new buffer in another window. C-x 4 . invokes the function find-tag-
other-window. (This key sequence ends with a period.)

Emacs comes with a tags table file ‘TAGS’ (in the directory containing Lisp libraries) that
includes all the Lisp libraries and all the C sources of Emacs. By specifying this file with
visit-tags-table and then using M-. you can quickly look at the source of any Emacs
function.

22.11.6 Searching and Replacing with Tags Tables

The commands in this section visit and search all the files listed in the selected tags table,
one by one. For these commands, the tags table serves only to specify a sequence of files to
search. A related command is M-Xx grep (see Section 23.1 [Compilation], page 209).

M-x tags-search RETi regexp HRETI
Search for regexp through the files in the selected tags table.

M-x tags-query-replace RETI regexp WRET replacement MRET
Perform a query-replace-regexp on each file in the selected tags table.

M-, Restart one of the commands above, from the current location of point (tags-
loop-continue).

M-x tags-search reads a regexp using the minibuffer, then searches for matches in all
the files in the selected tags table, one file at a time. It displays the name of the file being
searched so you can follow its progress. As soon as it finds an occurrence, tags-search
returns.

Having found one match, you probably want to find all the rest. To find one more match,
type M-, (tags-loop-continue) to resume the tags-search. This searches the rest of the
current buffer, followed by the remaining files of the tags table.

M-x tags-query-replace performs a single query-replace-regexp through all the files
in the tags table. It reads a regexp to search for and a string to replace with, just like ordi-
nary M-x query-replace-regexp . It searches much like M-x tags-search , but repeatedly,
processing matches according to your input. See Section 13.7 [Replace], page 104, for more
information on query replace.

Chapter 22: Editing Programs 203

Tt is possible to get through all the files in the tags table with a single invocation of M-x
tags-query-replace . But often it is useful to exit temporarily, which you can do with any
input event that has no special query replace meaning. You can resume the query replace
subsequently by typing M-, ; this command resumes the last tags search or replace command
that you did.

The commands in this section carry out much broader searches than the find-tag family.
The find-tag commands search only for definitions of tags that match your substring or
regexp. The commands tags-search and tags-query-replace find every occurrence of
the regexp, as ordinary search commands and replace commands do in the current buffer.

These commands create buffers only temporarily for the files that they have to search
(those which are not already visited in Emacs buffers). Buffers in which no match is found
are quickly killed; the others continue to exist.

It may have struck you that tags-search is a lot like grep. You can also run grep itself
as an inferior of Emacs and have Emacs show you the matching lines one by one. This
works much like running a compilation; finding the source locations of the grep matches
works like finding the compilation errors. See Section 23.1 [Compilation], page 209.

If you wish to process all the files in a selected tags table, but M-x tags-search and M-X
tags-query-replace are not giving you the desired result, you can use M-x next-file
C-u M-x next-file

With a numeric argument, regardless of its value, visit the first file in the tags
table and prepare to advance sequentially by files.

M-x next-file
Visit the next file in the selected tags table.

22.11.7 Tags Table Inquiries

M-x list-tags
Display a list of the tags defined in a specific program file.

M-x tags-apropos
Display a list of all tags matching a specified regexp.

M-x list-tags reads the name of one of the files described by the selected tags table,
and displays a list of all the tags defined in that file. The “file name” argument is really
just a string to compare against the names recorded in the tags table; it is read as a string
rather than a file name. Therefore, completion and defaulting are not available, and you
must enter the string the same way it appears in the tag table. Do not include a directory as
part of the file name unless the file name recorded in the tags table contains that directory.

M-x tags-apropos is like apropos for tags. It reads a regexp, then finds all the tags in
the selected tags table whose entries match that regexp, and displays the tag names found.

22.12 Fortran Mode

Fortran mode provides special motion commands for Fortran statements and subprograms,
and indentation commands that understand Fortran conventions of nesting, line numbers,
and continuation statements.

Special commands for comments are provided because Fortran comments are unlike those
of other languages.

204 XEmacs User’s Manual

Built-in abbrevs optionally save typing when you insert Fortran keywords.

Use M-x fortran-mode to switch to this major mode. Doing so calls the value of
fortran-mode-hook as a function of no arguments if that variable has a non-nil value.

Fortran mode was contributed by Michael Prange.

22.12.1 Motion Commands

Fortran mode provides special commands to move by subprograms (functions and sub-
routines) and by statements. There is also a command to put the region around one
subprogram, which is convenient for killing it or moving it.

C-M-a Move to beginning of subprogram
(beginning-of-fortran-subprogram).

C-M-e Move to end of subprogram (end-of-fortran-subprogram).
C-M-h Put point at beginning of subprogram and mark at end (mark-fortran-
subprogram).

C-c C-n Move to beginning of current or next statement (fortran-next-
statement).

C-cC-p Move to beginning of current or previous statement (fortran-
previous-statement).

22.12.2 Fortran Indentation

Special commands and features are available for indenting Fortran code. They make sure
various syntactic entities (line numbers, comment line indicators, and continuation line
flags) appear in the columns that are required for standard Fortran.

22.12.2.1 Fortran Indentation Commands

HCAB Indent the current line (fortran-indent-1line).

M4LFDi Break the current line and set up a continuation line.

C-M-q Indent all the lines of the subprogram point is in (fortran-indent-
subprogram).

HCABi is redefined by Fortran mode to reindent the current line for Fortran (fortran-
indent-line). Line numbers and continuation markers are indented to their required
columns, and the body of the statement is independently indented, based on its nesting in
the program.

The key C-M-qis redefined as fortran-indent-subprogram, a command that reindents
all the lines of the Fortran subprogram (function or subroutine) containing point.

The key MALFDi is redefined as fortran-split-line, a command to split a line in
the appropriate fashion for Fortran. In a non-comment line, the second half becomes a
continuation line and is indented accordingly. In a comment line, both halves become
separate comment lines.

Chapter 22: Editing Programs 205

22.12.2.2 Line Numbers and Continuation

If a number is the first non-whitespace in the line, it is assumed to be a line number and
is moved to columns 0 through 4. (Columns are always counted from 0 in XEmacs.) If the
text on the line starts with the conventional Fortran continuation marker ‘$’, it is moved to
column 5. If the text begins with any non whitespace character in column 5, it is assumed
to be an unconventional continuation marker and remains in column 5.

Line numbers of four digits or less are normally indented one space. This amount is con-
trolled by the variable fortran-line-number-indent, which is the maximum indentation
a line number can have. Line numbers are indented to right-justify them to end in column
4 unless that would require more than the maximum indentation. The default value of the
variable is 1.

Simply inserting a line number is enough to indent it according to these rules. As each
digit is inserted, the indentation is recomputed. To turn off this feature, set the variable
fortran-electric-line-number to nil. Then inserting line numbers is like inserting
anything else.

22.12.2.3 Syntactic Conventions

Fortran mode assumes that you follow certain conventions that simplify the task of under-
standing a Fortran program well enough to indent it properly:

e Two nested ‘do’ loops never share a ‘continue’ statement.

e The same character appears in column 5 of all continuation lines. It is the value of the
variable fortran-continuation-char. By default, this character is ‘$’.

If you fail to follow these conventions, the indentation commands may indent some lines
unaesthetically. However, a correct Fortran program will retain its meaning when reindented
even if the conventions are not followed.

22.12.2.4 Variables for Fortran Indentation
Several additional variables control how Fortran indentation works.

fortran-do-indent
Extra indentation within each level of ‘do’ statement (the default is 3).

fortran-if-indent
Extra indentation within each level of ‘if’ statement (the default is 3).

fortran-continuation-indent
Extra indentation for bodies of continuation lines (the default is 5).

fortran-check-all-num-for-matching-do
If this is nil, indentation assumes that each ‘do’ statement ends on a ‘continue’
statement. Therefore, when computing indentation for a statement other than
‘continue’, it can save time by not checking for a ‘do’ statement ending there.
If this is non-nil, indenting any numbered statement must check for a ‘do’ that
ends there. The default is nil.

fortran-minimum-statement-indent
Minimum indentation for Fortran statements. For standard Fortran, this is 6.
Statement bodies are always indented at least this much.

206 XEmacs User’s Manual

22.12.3 Comments

The usual Emacs comment commands assume that a comment can follow a line of code.
In Fortran, the standard comment syntax requires an entire line to be just a comment.
Therefore, Fortran mode replaces the standard Emacs comment commands and defines
some new variables.

Fortran mode can also handle a non-standard comment syntax where comments start

with ‘17 and can follow other text. Because only some Fortran compilers accept this syntax,
Fortran mode will not insert such comments unless you have specified to do so in advance

by setting the variable comment-start to ‘"!"’ (see Section 29.3 [Variables|, page 282).
M-; Align comment or insert new comment (fortran-comment-indent).

C-x; Applies to nonstandard ‘!’ comments only.

C-c; Turn all lines of the region into comments, or (with arg) turn them back into

real code (fortran-comment-region).

M-; in Fortran mode is redefined as the command fortran-comment-indent. Like the
usual M-; command, it recognizes an existing comment and aligns its text appropriately. If
there is no existing comment, a comment is inserted and aligned.

Inserting and aligning comments is not the same in Fortran mode as in other modes.
When a new comment must be inserted, a full-line comment is inserted if the current line
is blank. On a non-blank line, a non-standard ‘!’ comment is inserted if you previously
specified you wanted to use them. Otherwise a full-line comment is inserted on a new line

before the current line.

Non-standard ‘!’ comments are aligned like comments in other languages, but full-line
comments are aligned differently. In a standard full-line comment, the comment delimiter
itself must always appear in column zero. What can be aligned is the text within the
comment. You can choose from three styles of alignment by setting the variable fortran-
comment-indent-style to one of these values:

fixed The text is aligned at a fixed column, which is the value of fortran-comment-
line-column. This is the default.

relative The text is aligned as if it were a line of code, but with an additional fortran-
comment-line-column columns of indentation.

nil Text in full-line columns is not moved automatically.

You can also specify the character to be used to indent within full-line comments by
setting the variable fortran-comment-indent-char to the character you want to use.

Fortran mode introduces two variables comment-line-start and comment-line-start-
skip, which do for full-line comments what comment-start and comment-start-skip do
for ordinary text-following comments. Normally these are set properly by Fortran mode, so
you do not need to change them.

The normal Emacs comment command C-X ; has not been redefined. It can therefore
be used if you use ‘!’ comments, but is useless in Fortran mode otherwise.

The command C-c ; (fortran-comment-region) turns all the lines of the region into

comments by inserting the string ‘C$$$’ at the front of each one. With a numeric arg, the
region is turned back into live code by deleting ‘C$$$’ from the front of each line. You can

Chapter 22: Editing Programs 207

control the string used for the comments by setting the variable fortran-comment-region.
Note that here we have an example of a command and a variable with the same name; the
two uses of the name never conflict because in Lisp and in Emacs it is always clear from
the context which one is referred to.

22.12.4 Columns

C-c Cr Displays a “column ruler” momentarily above the current line (fortran-
column-ruler).

C-c C-w Splits the current window horizontally so that it is 72 columns wide. This may
help you avoid going over that limit (fortran-window-create).

The command C-c C-r (fortran-column-ruler) shows a column ruler above the cur-
rent line. The comment ruler consists of two lines of text that show you the locations of
columns with special significance in Fortran programs. Square brackets show the limits of
the columns for line numbers, and curly brackets show the limits of the columns for the
statement body. Column numbers appear above them.

Note that the column numbers count from zero, as always in XEmacs. As a result, the
numbers may not be those you are familiar with; but the actual positions in the line are
standard Fortran.

The text used to display the column ruler is the value of the variable fortran-comment-
ruler. By changing this variable, you can change the display.

For even more help, use C-c C-w (fortran-window-create), a command which splits
the current window horizontally, resulting in a window 72 columns wide. When you edit in
this window, you can immediately see when a line gets too wide to be correct Fortran.

22.12.5 Fortran Keyword Abbrevs

Fortran mode provides many built-in abbrevs for common keywords and declarations. These
are the same sort of abbrevs that you can define yourself. To use them, you must turn on
Abbrev mode. see Chapter 24 [Abbrevs], page 229.

The built-in abbrevs are unusual in one way: they all start with a semicolon. You cannot
normally use semicolon in an abbrev, but Fortran mode makes this possible by changing
the syntax of semicolon to “word constituent”.

For example, one built-in Fortran abbrev is ‘; ¢’ for ‘continue’. If you insert ‘;c¢’ and then
insert a punctuation character such as a space or a newline, the ‘; ¢’ changes automatically
to ‘continue’, provided Abbrev mode is enabled.

Type ;7" or ‘;C-h’ to display a list of all built-in Fortran abbrevs and what they stand
for.

22.13 Asm Mode

Asm mode is a major mode for editing files of assembler code. It defines these commands:
hCABI tab-to-tab-stop.

fLFDi Insert a newline and then indent using tab-to-tab-stop.

Insert a colon and then remove the indentation from before the label preceding
colon. Then do tab-to-tab-stop.

208 XEmacs User’s Manual

; Insert or align a comment.

The variable asm-comment-char specifies which character starts comments in assembler
syntax.

Chapter 23: Compiling and Testing Programs 209

23 Compiling and Testing Programs

The previous chapter discusses the Emacs commands that are useful for making changes in
programs. This chapter deals with commands that assist in the larger process of developing
and maintaining programs.

23.1 Running “make”, or Compilers Generally

Emacs can run compilers for non-interactive languages like C and Fortran as inferior pro-
cesses, feeding the error log into an Emacs buffer. It can also parse the error messages and
visit the files in which errors are found, moving point to the line where the error occurred.

M-x compile
Run a compiler asynchronously under KEmacs, with error messages to
‘xcompilation*’ buffer.

M-x grep Run grep asynchronously under Emacs, with matching lines listed in the buffer
named ‘*compilation*’.

M-x kill-compilation
Kill the process made by the M-x compile command.

M-x kill-grep
Kill the running compilation or grep subprocess.

C-x" Visit the next compiler error message or grep match.

To run make or another compiler, type M-x compile. This command reads a shell com-
mand line using the minibuffer, then executes the specified command line in an inferior shell
with output going to the buffer named ‘*compilation*’. By default, the current buffer’s de-
fault directory is used as the working directory for the execution of the command; therefore,
the makefile comes from this directory.

When the shell command line is read, the minibuffer appears containing a default com-
mand line (the command you used the last time you typed M-x compile). If you type just
RETi, the same command line is used again. The first M-x compile provides make -k as
the default. The default is taken from the variable compile-command; if the appropriate
compilation command for a file is something other than make -k, it can be useful to have the
file specify a local value for compile-command (see Section 29.3.5 [File Variables], page 289).

When you start a compilation, the buffer ‘*compilation*’ is displayed in another win-
dow but not selected. Its mode line displays the word ‘run’ or ‘exit’ in the parentheses
to tell you whether compilation is finished. You do not have to keep this buffer visible;
compilation continues in any case.

To kill the compilation process, type M-x kill-compilation . The mode line of the
‘*compilation#’ buffer changes to say ‘signal’ instead of ‘run’. Starting a new compilation
also kills any running compilation, as only one can occur at any time. Starting a new
compilation prompts for confirmation before actually killing a compilation that is running.

To parse the compiler error messages, type C-x = (next-error). The character fol-
lowing C-X is the grave accent, not the single quote. The command displays the buffer
‘*compilation*’ in one window and the buffer in which the next error occurred in another

210 XEmacs User’s Manual

window. Point in that buffer is moved to the line where the error was found. The corre-
sponding error message is scrolled to the top of the window in which ‘*compilation*’ is
displayed.

The first time you use C-x ~ after the start of a compilation, it parses all the error
messages, visits all the files that have error messages, and creates markers pointing at
the lines the error messages refer to. It then moves to the first error message location.
Subsequent uses of C-X ~ advance down the data set up by the first use. When the preparsed
error messages are exhausted, the next C-x = checks for any more error messages that have
come in; this is useful if you start editing compiler errors while compilation is still going on.
If no additional error messages have come in, C-X ~ reports an error.

C-u C-x * discards the preparsed error message data and parses the ‘*compilationx*’
buffer again, then displays the first error. This way, you can process the same set of errors
again.

Instead of running a compiler, you can run grep and see the lines on which matches were
found. To do this, type M-x grep with an argument line that contains the same arguments
you would give to grep: a grep-style regexp (usually in single quotes to quote the shell’s
special characters) followed by filenames, which may use wildcard characters. The output
from grep goes in the ‘*compilationx’ buffer. You can use C-x = to find the lines that
match as if they were compilation errors.

Note: a shell is used to run the compile command, but the shell is not run in interactive
mode. In particular, this means that the shell starts up with no prompt. If you find your
usual shell prompt making an unsightly appearance in the ‘*compilation#*’ buffer, it means
you have made a mistake in your shell’s initialization file (‘.cshrc’ or ‘.shrc’ or ...) by
setting the prompt unconditionally. The shell initialization file should set the prompt only
if there already is a prompt. Here’s how to do it in csh:

if ($?prompt) set prompt = ...

23.2 Major Modes for Lisp

Emacs has four different major modes for Lisp. They are the same in terms of editing
commands, but differ in the commands for executing Lisp expressions.

Emacs-Lisp mode
The mode for editing source files of programs to run in Emacs Lisp. This mode
defines C-M-X to evaluate the current defun. See Section 23.3 [Lisp Libraries],
page 211.

Lisp Interaction mode
The mode for an interactive session with Emacs Lisp. It defines LFDi to evaluate
the sexp before point and insert its value in the buffer. See Section 23.6 [Lisp
Interaction|, page 216.

Lisp mode The mode for editing source files of programs that run in other dialects of Lisp
than Emacs Lisp. This mode defines C-M-x to send the current defun to an
inferior Lisp process. See Section 23.7 [External Lisp|, page 217.

Chapter 23: Compiling and Testing Programs 211

Inferior Lisp mode
The mode for an interactive session with an inferior Lisp process. This mode
combines the special features of Lisp mode and Shell mode (see Section 28.2.3
[Shell Mode], page 274).

Scheme mode
Like Lisp mode but for Scheme programs.

Inferior Scheme mode
The mode for an interactive session with an inferior Scheme process.

23.3 Libraries of Lisp Code for Emacs

Lisp code for Emacs editing commands is stored in files whose names conventionally end
in ‘.el’. This ending tells Emacs to edit them in Emacs-Lisp mode (see Section 23.2 [Lisp
Modes], page 210).

23.3.1 Loading Libraries

M-x load-file file
Load the file le of Lisp code.

M-x load-library library
Load the library named library .

M-x locate-library library &optional nosuffix
Show the full path name of Emacs library library .

To execute a file of Emacs Lisp, use M-x load-file . This command reads the file name
you provide in the minibuffer, then executes the contents of that file as Lisp code. It is not
necessary to visit the file first; in fact, this command reads the file as found on disk, not
the text in an Emacs buffer.

Once a file of Lisp code is installed in the Emacs Lisp library directories, users can load
it using M-x load-library . Programs can load it by calling load-library, or with load,
a more primitive function that is similar but accepts some additional arguments.

M-x load-library differs from M-x load-file in that it searches a sequence of directo-
ries and tries three file names in each directory. The three names are: first, the specified
name with ‘.elc’ appended; second, the name with ‘.el’ appended; third, the specified
name alone. A ‘.elc’ file would be the result of compiling the Lisp file into byte code; if
possible, it is loaded in preference to the Lisp file itself because the compiled file loads and
runs faster.

Because the argument to load-library is usually not in itself a valid file name, file
name completion is not available. In fact, when using this command, you usually do not
know exactly what file name will be used.

The sequence of directories searched by M-x load-library is specified by the variable
load-path, a list of strings that are directory names. The elements of this list may not
begin with "**"", so you must call expand-file-name on them before adding them to the
list. The default value of the list contains the directory where the Lisp code for Emacs itself
is stored. If you have libraries of your own, put them in a single directory and add that
directory to load-path. nil in this list stands for the current default directory, but it is

212 XEmacs User’s Manual

probably not a good idea to put nil in the list. If you start wishing that nil were in the
list, you should probably use M-x load-file for this case.

The variable is initialized by the EMACSLOADPATH environment variable. If no value
is specified, the variable takes the default value specified in the file ‘paths.h’ when Emacs
was built. If a path isn’t specified in ‘paths.h’. a default value is obtained from the file
system, near the directory in which the Emacs executable resides.

Like M-x load-library , M-x locate-library searches the directories in load-path to
find the file that M-x load-library would load. If the optional second argument nosu X
is non-nil, the suffixes ‘.elc’ or ‘.el’ are not added to the specified name library (like
calling load instead of load-library).

You often do not have to give any command to load a library, because the commands
defined in the library are set up to autoload that library. Running any of those commands
causes load to be called to load the library; this replaces the autoload definitions with the
real ones from the library.

If autoloading a file does not finish, either because of an error or because of a C-g quit, all
function definitions made by the file are undone automatically. So are any calls to provide.
As a consequence, the entire file is loaded a second time if you use one of the autoloadable
commands again. This prevents problems when the command is no longer autoloading but
is working incorrectly because the file was only partially loaded. Function definitions are
undone only for autoloading; explicit calls to load do not undo anything if loading is not
completed.

The variable after-load-alist takes an alist of expressions to be evaluated when par-
ticular files are loaded. Each element has the form (flename forms...). When load
is run and the filename argument is lename, the forms in the corresponding element are
executed at the end of loading.

lename must match exactly. Normally lename is the name of a library, with no
directory specified, since that is how load is normally called. An error in forms does not
undo the load, but it does prevent execution of the rest of the forms.

23.3.2 Compiling Libraries

Emacs Lisp code can be compiled into byte-code which loads faster, takes up less space
when loaded, and executes faster.

M-x batch-byte-compile
Run byte-compile-file on the files remaining on the command line.

M-x byte-compile-buffer &optional buffer
Byte-compile and evaluate contents of bu er (default is current buffer).

M-x byte-compile-file
Compile a file of Lisp code named lename into a file of byte code.

M-x byte-compile-and-load-file filename
Compile a file of Lisp code named lename into a file of byte code and load it.

M-x byte-recompile-directory directory
Recompile every ‘.el’ file in directory that needs recompilation.

Chapter 23: Compiling and Testing Programs 213

M-x disassemble
Print disassembled code for object on (optional) stream.

M-x make-obsolete function new
Make the byte-compiler warn that function is obsolete and new should be used
instead.

byte-compile-file creates a byte-code compiled file from an Emacs-Lisp source file.
The default argument for this function is the file visited in the current buffer. The function
reads the specified file, compiles it into byte code, and writes an output file whose name is
made by appending ‘c’ to the input file name. Thus, the file ‘rmail.el’ would be compiled
into ‘rmail.elc’. To compile a file of Lisp code named lename into a file of byte code and
then load it, use byte-compile-and-load-file. To compile and evaluate Lisp code in a
given buffer, use byte-compile-buffer.

To recompile all changed Lisp files in a directory, use M-x byte-recompile-directory
Specify just the directory name as an argument. Each ‘.el’ file that has been byte-compiled
before is byte-compiled again if it has changed since the previous compilation. A numeric
argument to this command tells it to offer to compile each ‘.el’ file that has not been
compiled yet. You must answer y or n to each offer.

You can use the function batch-byte-compile to invoke Emacs non-interactively from
the shell to do byte compilation. When you use this function, the files to be compiled are
specified with command-line arguments. Use a shell command of the form:

emacs -batch -f batch-byte-compile files

Directory names may also be given as arguments; in that case, byte-recompile-
directory is invoked on each such directory. batch-byte-compile uses all remaining
command-line arguments as file or directory names, then kills the Emacs process.

M-x disassemble explains the result of byte compilation. Its argument is a function
name. It displays the byte-compiled code in a help window in symbolic form, one instruction
per line. If the instruction refers to a variable or constant, that is shown, too.

23.3.3 Converting Mocklisp to Lisp

XEmacs can run Mocklisp files by converting them to Emacs Lisp first. To convert a Mock-
lisp file, visit it and then type M-x convert-mocklisp-buffer . Then save the resulting
buffer of Lisp file in a file whose name ends in ‘.el’ and use the new file as a Lisp library.

You cannot currently byte-compile converted Mocklisp code. The reason is that con-
verted Mocklisp code uses some special Lisp features to deal with Mocklisp’s incompatible
ideas of how arguments are evaluated and which values signify “true” or “false”.

23.4 Evaluating Emacs-Lisp Expressions

Lisp programs intended to be run in Emacs should be edited in Emacs-Lisp mode; this will
happen automatically for file names ending in ‘.el’. By contrast, Lisp mode itself should
be used for editing Lisp programs intended for other Lisp systems. Emacs-Lisp mode can
be selected with the command M-x emacs-lisp-mode .

For testing of Lisp programs to run in Emacs, it is useful to be able to evaluate part
of the program as it is found in the Emacs buffer. For example, if you change the text of
a Lisp function definition and then evaluate the definition, Emacs installs the change for

214 XEmacs User’s Manual

future calls to the function. Evaluation of Lisp expressions is also useful in any kind of
editing task for invoking non-interactive functions (functions that are not commands).

M+ESCi Read a Lisp expression in the minibuffer, evaluate it, and print the value in the
minibuffer (eval-expression).

C-x C-e Evaluate the Lisp expression before point, and print the value in the minibuffer
(eval-last-sexp).

C-M-x Evaluate the defun containing point or after point, and print the value in the
minibuffer (eval-defun).

M-x eval-region
Evaluate all the Lisp expressions in the region.

M-x eval-current-buffer
Evaluate all the Lisp expressions in the buffer.

M4ESCi (eval-expression) is the most basic command for evaluating a Lisp expression
interactively. It reads the expression using the minibuffer, so you can execute any expression
on a buffer regardless of what the buffer contains. When evaluation is complete, the current
buffer is once again the buffer that was current when M+4ESG was typed.

MHESC can easily confuse users, especially on keyboards with autorepeat, where it can
result from holding down the fESG key for too long. Therefore, eval-expression is nor-
mally a disabled command. Attempting to use this command asks for confirmation and gives
you the option of enabling it; once you enable the command, you are no longer required to
confirm. See Section 29.5.3 [Disabling], page 297.

In Emacs-Lisp mode, the key C-M-x is bound to the function eval-defun, which parses
the defun containing point or following point as a Lisp expression and evaluates it. The
value is printed in the echo area. This command is convenient for installing in the Lisp
environment changes that you have just made in the text of a function definition.

The command C-x C-e (eval-last-sexp) performs a similar job but is available in all
major modes, not just Emacs-Lisp mode. It finds the sexp before point, reads it as a Lisp
expression, evaluates it, and prints the value in the echo area. It is sometimes useful to
type in an expression and then, with point still after it, type C-x C-e.

If C-M-x or C-x C-e are given a numeric argument, they print the value by inserting it
into the current buffer at point, rather than in the echo area. The argument value does not
matter.

The most general command for evaluating Lisp expressions from a buffer is eval-region.
M-x eval-region parses the text of the region as one or more Lisp expressions, evaluating
them one by one. M-X eval-current-buffer is similar, but it evaluates the entire buffer.
This is a reasonable way to install the contents of a file of Lisp code that you are just ready
to test. After finding and fixing a bug, use C-M-Xx on each function that you change, to keep
the Lisp world in step with the source file.

23.5 The Emacs-Lisp Debugger

XEmacs contains a debugger for Lisp programs executing inside it. This debugger is nor-
mally not used; many commands frequently get Lisp errors when invoked in inappropriate

Chapter 23: Compiling and Testing Programs 215

contexts (such as C-f at the end of the buffer) and it would be unpleasant to enter a special
debugging mode in this case. When you want to make Lisp errors invoke the debugger,
you must set the variable debug-on-error to non-nil. Quitting with C-g is not consid-
ered an error, and debug-on-error has no effect on the handling of C-g. However, if you
set debug-on-quit to be non-nil, C-g will invoke the debugger. This can be useful for
debugging an infinite loop; type C-g once the loop has had time to reach its steady state.
debug-on-quit has no effect on errors.

You can make Emacs enter the debugger when a specified function is called or at a
particular place in Lisp code. Use M-x debug-on-entry with argument fun-name to have
Emacs enter the debugger as soon as fun-name is called. Use M-x cancel-debug-on-entry
to make the function stop entering the debugger when called. (Redefining the function also
does this.) To enter the debugger from some other place in Lisp code, you must insert the
expression (debug) there and install the changed code with C-M-x. See Section 23.4 [Lisp
Eval], page 213.

When the debugger is entered, it displays the previously selected buffer in one window
and a buffer named ‘*Backtrace*’ in another window. The backtrace buffer contains one
line for each level of Lisp function execution currently going on. At the beginning of the
buffer is a message describing the reason that the debugger was invoked, for example, an
error message if it was invoked due to an error.

The backtrace buffer is read-only and is in Backtrace mode, a special major mode in
which letters are defined as debugger commands. The usual Emacs editing commands
are available; you can switch windows to examine the buffer that was being edited at the
time of the error, and you can switch buffers, visit files, and perform any other editing
operations. However, the debugger is a recursive editing level (see Section 28.5 [Recursive
Edit], page 277); it is a good idea to return to the backtrace buffer and explicitly exit the
debugger when you don’t want to use it any more. Exiting the debugger kills the backtrace
buffer.

The contents of the backtrace buffer show you the functions that are executing and the
a