
@

(XEmacs Terminal Emulator Mode)

1

This is some notes about the term Emacs mode.

Chapter 1: XEmacs Terminal Emulator Mode 2

1 XEmacs Terminal Emulator Mode

The term package includes the major modes term, shell, and gud (for running gbd or
another debugger). It is a replacement for the comint mode of Emacs 19, as well as shell,
gdb, terminal, and telnet modes. The package works best with recent releases of Emacs 19,
but will also work reasonably well with Emacs 18 as well as Lucid Emacs 19.

The �le nshell.el is a wrapper to use unless term mode is built into Emacs. If works
around some of the missing in older Emacs versions. To use it, edit the paths in nshell.el,
appropriately, and then M-x load-file nshell.el RET. This will also load in replacement
shell and gud modes.

1.1 Overview

The term mode is used to control a program (an "inferior process"). It sends most
keyboard input characters to the program, and displays output from the program in the
bu�er. This is similar to the traditional comint mode, and modes derived from it (such as
shell and gdb modes). You can do with the new term-based shell the same sort of things
you could do with the old shell mode, using more or less the same interface. However, the
new mode is more
exible, and works somewhat di�erently.

1.1.1 Output from the inferior

In typical usage, output from the inferior is added to the end of the bu�er. If needed,
the window will be scrolled, just like a regular terminal. (Only one line at a time will be
scrolled, just like regular terminals, and in contrast to the old shell mode.) Thus the bu�er
becomes a log of your interaction with the inferior, just like the old shell mode.

Like a real terminal, term maintains a "cursor position." This is the process-mark of
the inferior process. If the process-mark is not at the end of the bu�er, output from the
inferior will overwrite existing text in the bu�er. This is like a real terminal, but unlike the
old shell mode (which inserts the output, instead of overwriting).

Some programs (such as Emacs itself) need to control the appearance on the screen
in detail. They do this by sending special control codes. The exact control codes needed
from terminal to terminal, but nowadays most terminals and terminal emulators (including
xterm) understand the so-called "ANSI escape sequences" (�rst popularized by the Digital's
VT100 family of terminal). The term mode also understands these escape sequences, and
for each control code does the appropriate thing to change the bu�er so that the appearance
of the window will match what it would be on a real terminal. (In contrast, the old shell
mode doesn't handle terminal control codes at all.)

See <...> for the speci�c control codes.

1.1.2 The sub-bu�er

A program that talks to terminal expects the terminal to have a �xed size. If the
program is talking a terminal emulator program such as xterm, that size can be changed
(if the xterm window is re-sized), but programs still assume a logical terminal that has a
�xed size independent of the amount of output transmitted by the programs.

Chapter 1: XEmacs Terminal Emulator Mode 3

To programs that use it, the Emacs terminal emulator acts as if it too has a �xed size.
The sub-bu�er is the part of a term-mode bu�er that corresponds to a "normal" terminal.
Most of the time (unless you explicitly scroll the window displaying the bu�er), the sub-
bu�er is the part of the bu�er that is displayed in a window.

The sub-bu�er is de�ned in terms of three bu�er-local-variable:

Variableterm-height
The height of the sub-bu�er, in screen lines.

Variableterm-width
The width of the sub-bu�er, in screen columns.

Variableterm-home-marker
The "home" position, that is the top left corner of the sub-bu�er.

The sub-bu�er is assumed to be the end part of the bu�er; the term-home-marker should
never be more than term-height screen lines from the end of the bu�er.

1.1.3 The alternate sub-bu�er

When a "graphical" program �nishes, it is nice to restore the screen state to what it
was before the program started. Many people are used to this behavior from xterm, and
its also o�ered by the term emulator.

Functionterm-switch-to-alternate-sub-bu�er set
If set is true, and we're not already using the alternate sub-bu�er, switch to it. What
this means is that the term-home-marker is saved (in the variable term-saved-home-
marker), and the term-home-marker is set to the end of the bu�er.
If set is false and we're using the alternate sub-bu�er, switch back to the saved
sub-bu�er. What this means is that the (current, alternate) sub-bu�er is deleted (us-
ing (delete-region term-home-marker (point-max))), and then the term-home-
marker is restored (from term-saved-home-marker).

1.1.4 Input to the inferior

Characters typed by the user are sent to the inferior. How this is done depends on
whether the term bu�er is in "character" mode or "line" mode. (A term bu�er can also be
in "pager" mode. This is discussed <later>.) Which of these is currently active is speci�ed
in the mode line. The di�erence between them is the key-bindings available.

In character mode, one character (by default hC-ci) is special, and is a pre�x for various
commands. All other characters are sent directly to the inferior process, with no interpre-
tation by Emacs. Character mode looks and feels like a real terminal, or a conventional
terminal emulator such as xterm.

In line mode, key commands mostly have standard Emacs actions. Regulars characters
insert themselves into the bu�er. When return is typed, the entire current line of the bu�er
(except possibly the prompt) is sent to the inferior process. Line mode is basically the
original shell mode from earlier Emacs versions.

Chapter 1: XEmacs Terminal Emulator Mode 4

To switch from line mode to character mode type C-c C-k. To switch from character
mode to line mode type C-c C-j .

In either mode, "echoing" of user input is handled by the inferior. Therefor, in line
mode after an input line at the end of the bu�er is sent to the inferior, it is deleted from
the bu�er. This is so that the inferior can echo the input, if it wishes (which it normally
does).

1.2 Connecting to remote computers

If you want to login to a remove computer, you can do that just as you would expect,
using whatever commands you would normally use.

(This is worth emphasizing, because earlier versions of shell mode would not work
properly if you tried to log in to some other computer, because of the way echoing was
handled. That is why there was a separate telnet mode to partially compensate for these
problems. The telnet mode is no longer needed, and is basically obsolete.)

A program that asks you for a password will normally suppress echoing of the password,
so the password will not show up in the bu�er. This will happen just as if you were using
a real terminal, if the bu�er is in char mode. If it is in line mode, the password will be
temporarily visible, but will be erased when you hit return. (This happens automatically;
there is no special password processing.)

When you log in to a di�erent machine, you need to specify the type of terminal your
using. If you are talking to a Bourne-compatible shell, and your system understands the
TERMCAP variable, you can use the command M-x shell-send-termcap , which sends a string
specifying the terminal type and size. (This command is also useful after the window has
changed size.)

If you need to specify the terminal type manually, you can try the terminal types "ansi"
or "vt100".

You can of course run gdb on that remote computer. One useful trick: If you invoke
gdb with the --fullname option, it will send special commands to Emacs that will cause
Emacs to pop up the source �les you're debugging. This will work whether or not gdb is
running on a di�erent computer than Emacs, assuming can access the source �les speci�ed
by gdb.

1.3 Paging

When the pager is enabled, Emacs will "pause" after each screenful of output (since the
last input sent to the inferior). It will enter "pager" mode, which feels a lot like the "more"
program: Typing a space requests another screenful of output. Other commands request
more or less output, or scroll backwards in the term bu�er. In pager mode, type h or ? to
display a help message listing all the available pager mode commands.

In either character or line mode, type C-c p to enable paging, and C-c D to disable it.

Chapter 1: XEmacs Terminal Emulator Mode 5

1.4 Terminal Escape sequences

A program that does "graphics" on a terminal controls the terminal by sending strings
called terminal escape sequencesthat the terminal (or terminal emulator) interprets as
special commands. The term mode includes a terminal emulator that understands standard
ANSI escape sequences, originally popularized by VT100 terminals, and now used by the
xterm program and most modern terminal emulator software.

printing chars

tab

LF

1.4.1 Escape sequences to move the cursor

RETURN Moves to the beginning of the current screen line.

C-b Moves backwards one column. (Tabs are broken up if needed.)

Esc [R ; C H
Move to screen row R, screen column C, where (R=1) is the top row, and (C=1)
is the leftmost column. Defaults are R=1 and C=1.

Esc [N A Move N (default 1) screen lines up.

Esc [N B Move N (default 1) screen lines down.

Esc [N C Move N (default 1) columns right.

Esc [N D Move N (default 1) columns left.

1.4.2 Escape commands for erasing text

These commands "erase" part of the sub-bu�er. Erasing means replacing by white space;
it is not the same as deleting. The relative screen positions of things that are not erased
remain unchanged with each other, as does the relative cursor position.

E [J Erase from cursor to end of screen.

E [0 J Same as E [J.

E [1 J Erase from home position to point.

E [2 J Erase whole sub-bu�er.

E [K Erase from point to end of screen line.

E [0 K Same as E [K.

E [1 K Erase from beginning of screen line to point.

E [2 K Erase whole screen line.

Chapter 1: XEmacs Terminal Emulator Mode 6

1.4.3 Escape sequences to insert and delete text

Esc [N L Insert N (default 1) blank lines.

Esc [N M Delete N (default 1) lines.

Esc [N P Delete N (default 1) characters.

Esc [N @ Insert N (default 1) spaces.

1.4.4 Escape sequences to scroll part of the visible window

Esc D Scroll forward one screen line.

Esc M Scroll backwards one screen line.

Esc [T ; B r
Set the scrolling region to be from lines T down to line B inclusive, where line
1 is the topmost line.

1.4.5 Command hook

If C-z is seen, any text up to a following hLFi is scanned. The text in between (not
counting the initial C-z or the �nal LF) is passed to the function that is the value of
term-command-hook.

The default value of the term-command-hook variable is the function term-command-
hook, which handles the following:

C-z C-z FILENAME:LINENUMBER:IGNORED LF
Set term-pending-frame to (cons "FILENAME" LINENUMBER). When the bu�er
is displayed in the current window, show the FILENAME in the other window,
and show an arrow at LINENUMBER. Gdb emits these strings when invoked
with the
ag {fullname. This is used by gdb mode; you can also invoke gdb
with this
ag from shell mode.

C-z / DIRNAME LF
Set the directory of the term bu�er to DIRNAME

C-z ! LEXPR LF
Read and evaluate LEXPR as a Lisp expression. The result is ignored.

1.4.6 Miscellaneous escapes

C-g (Bell)
Calls (beep t).

Esc 7 Save cursor.

Esc 8 Restore cursor.

Esc [47 h
Switch to the alternate sub-bu�er,

Esc [47 l
Switch back to the regular sub-bu�er,

