
B a s k e r v i l l e
The Annals of the UK TEX Users’ Group Guest Editor: Peter Abbott Vol. 6 No. 4

ISSN 1354–5930 October 1996

Articles may be submitted via electronic mail tobaskerville@tex.ac.uk , or on MSDOS-compatible discs, to
Sebastian Rahtz, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, to whom any
correspondence concerningBaskervilleshould also be addressed.

This reprint ofBaskervilleis set in Times Roman, with Computer Modern Typewriter for literal text; the source is
archived onCTAN in usergrps/uktug .

Back issues from the previous 12 months may be ordered from UKTUG for £2 each; earlier issues are archived on
CTAN in usergrps/uktug .

Please send UKTUG subscriptions, and book or software orders, to Peter Abbott, 1 Eymore Close, Selly
Oak, Birmingham B29 4LB. Fax/telephone: 0121 476 2159. Email enquiries about UKTUG touktug-
enquiries@tex.ac.uk .

Contents

1 Editorial . 2
2 ‘Post Editorial’ . 2

I The Joy of TEX2PDF—Acrobatics with an Alternative to DVI Format. 3
1 Motivation . 3
2 Formats for Electronic Document Delivery 3

2.1 DVI Format . 4
2.2 Portable Document Format . 4
2.3 SGML . 4

3 Current Possibilities for Producing PDF from TEX 4
4 The Name of the Game . 5

4.1 New primitives . 5
4.2 Font handling . 5
4.3 Compression . 5
4.4 Graphics . 6
4.5 Implementation . 6

5 Pros and Cons . 6
6 Object Reuse . 8
7 Future Work . 8

II LATEX, dvips, EPS and the web. 11
1 What and why is EPS? . 11
2 What aboutdvi to Encapsulated PostScript? 12
3 LATEX to EPS to GIF to Web . 13

III Newsletters with LATEX . 16
1 Text Columns . 16
2 Short Articles . 16
3 Graphics . 16
4 Starting Articles . 17
5 Page Breaks . 17
6 Typefaces . 17

IV An introduction to PSTricks, part 4. 18
1 Data plotting . 18
2 PSTricks programming examples . 20

–1–

reprinted from Baskerville Volume 6, Number 4

V The javaTEX project & web2java . 26
1 Why Java? . 26
2 Howweb2java works . 26
3 Theweb2java program . 27
4 Implementation . 27

4.1 Removinggoto ’s . 27
4.2 Type definitions . 29
4.3 Input/Output . 30

5 Conclusions . 30
5.1 Project details . 30

VI Malcolm’s Gleanings. 31
0.2 Ligature trivia . 31
0.3 TUGboat . 31
0.4 The classic fonts . 31
0.5 Slip between cup and lip . 31
0.6 TEX lauded at Seybold. 31
0.7 TB-L . 31

VIITUG’96 — fun and profit in Dubna. 32
1 1995/96 Accounts . 36

VIIIThe UK TEX Users’ Group. 39
IX Obtaining TEX . 40

1 Editorial

I can almost hear the commentsLate again!I can only pay tribute to Sebastian who managed to produce so many
issuesand on time.

At the committee meeting where the work was shared out, it was stated that all the style files etc. were available
and it was simply a matter of loading them and processing the provided articles. Just write an editorial and use the
standard filler to complete the 24 pages.

I have been using TEX and LATEX since 1986 and have been using it on my Mac (an LC475) for some time with
only minor problems. Robin Fairbairns kindly sent me the relevant files fromBaskerville6.3 and Sebastian Rahtz sent
me most of the material. From the starting point it was just like snakes and ladders, as fast as I climbed a ladder there
was another snake at the top. I have lost count of the number of times that I have changed the parameters and had to
run initex besides increasing the memory for OzTEX and DVIPS.

Eventually, several weeks later, I managed to actually produce a printed copy. My knowledge of LATEX has increased
considerably but I am sure that my other documents will never approach such complexity.

I can now appreciate all the effort expended by all the guest editors, but am still grateful to have ‘had my turn’. I
am even more pleased that it is over. I hope it is a long time before it comes around again. Like previous guest editors,
I would have been unable to produce this issue without the help, encouragement and patient response to what were
probably stupid questions on my part to other committee members. I even had to ask for help in the final stage of
production. Perhaps I should reclassify myself as only an intermediate TEX user? Anyway read on and enjoy.

Peter Abbott

2 ‘Post Editorial’

Peter worked very hard on this issue of Baskerville, but was delayed by the unavailability of my Dubna report. I
therefore suggested that he should send his material to me, and that I would finish the job. As you will have observed,
it’s taken mefar too long to do that—only a couple of weeks of the lateness of this issue is due to Peter. Those who
know me will know that I only did about four things on time last year: I apologise most profusely to the membership
that this issue was one of the things I delayed. Robin Fairbairns

–2–

I The Joy of TEX2PDF—Acrobatics with an Alternative to DVI Format

Petr Sojka, Han The Thanh, and Jiří Zlatuška

Faculty of Informatics

Masaryk University Brno

Burešova 20, 602 00 Brno

Czech Republic

[Editor’s note:At the TEX Users Group meeting held in Dubna, Russia, in July/August 1996, a prize in memory of
Cathy Booth was awarded to this paper. Delegates to the conference gave it their overwhelming vote when asked to
consider which paper would affect their TEX work in the future. Sebastian Rahtz and Robin Fairbairns, representing
UKTUG at the meeting, were delighted to keep alive the memory of Cathy Booth with a paper she would have greatly
enjoyed.

This paper is reprinted fromTUGboat16(3) with kind permission of Barbara Beeton and the authors.]

Summary
This paper presents a discussion about generating Portable Document Format (PDF) directly from TEX source using
a prototype TEX2PDF program. This is a derivative made from the TEX source which allows us to bypass DVI output
generation, and to produce documents in Adobe PDF directly. Motivations for the TEX2PDF approach are discussed
and further possible enhancements are outlined.

1 Motivation

GO FORTHnow

and create masterpieces

of the publishing art!

Don Knuth [18], p. 303.

General acceptance of TEX for the publishing of technical documents has spread enormously during the last two
decades. Since TEX’s inception, however, new standards have emerged in the publishing world. SGML and LATEX
for markup, POSTSCRIPT and Portable Document Format as page description languages (PDL), are just a few of the
buzzwords in the arena. Publishers are moving towards the art of creatingelectronicdocuments.

TEX’s typesetting engine outputs its results in the device independent (DVI) page description format [9, 10]. To
avoid duplication, and to be backward compatible, various extensions to the DVI format have been used via the
\special command. Do you need color? Use color supporting\special s. Do you need PostScript fragments
in the dvi file? Graphics in various formats? PDF fragments in thedvi file? Hypertext? Document/object struc-
ture markup for an SGML driver? Every new application usually ends up as a new set of\special s, which are
unfortunately, not yet standardized [26, 24].

Do you need portable object reuse in yourdvi file? Sound? Portable Multiple Master font parameters? No
\special s for these are in sight.

As a result of all this, documents in DVI format are not really portable, as they usually contain a lot of\special s,
and visual appearance depends on the device drivers available at the reader’s site. These and similar problems and
thoughts have led us to research on the possibility of generating portable electronic documents which will offer widest
range of functionality from well established and widely used (LA)TEX sources.

We give an overview of current formats relevant to the electronic document storage, including the current possibil-
ities for producing PDF—a possible format of choice for electronic documents. We suggest a new approach by means
of the TEX2PDF program and discuss its merits with respect to other approaches. We conclude with a discussion of
object reuse and future developments.

2 Formats for Electronic Document Delivery

reprinted from Baskerville Volume 6, Number 4

reprinted from Baskerville Volume 6, Number 4

Program(s) without LZW with LZW without compression

compression compression and PDF file gzipped

TEX2PDF (α-test version) 8 063 658 3 086 545 1 906 184

TEX + dvips 5.58 + Adobe Distiller 2.1 10 530 967 4 387 232 2 115 827

TEX + dvips 5.58 + Aladdin Ghostscript 4.0 16 908 552 not applicable

Table 1.Size comparison of several ways of producing PDF file (tex.pdf) from a TEX file (tex.tex)

2.1 DVI Format
A dvi file is the standard output of a TEX run and is often used as a format for storage and exchange of typeset TEX
documents.

DVI format is heavily (but not exclusively) used e.g. in the Los Alamos e-Print archive |http://xxx.lanl.gov/|.Several
tens of thousands documents are available (typeset by autoTEXing scripts) from there. The disadvantage is that the
documents are not ‘self-embedded’, which means that they rely on standardisation of font names and availability of
fonts at the document consumer’s site. Hypertext extensions to the DVI format have been accomplished by a set of
HTML-like \special s defined by the HyperTEX project (http://xxx.lanl.gov/hypertex/) and special
versions of previewers (xhdvi), dvihps andghostscript (ghosthview) have been developed.

2.2 Portable Document Format
PDF [5] is a page description language derived from Adobe’s PostScript language [2]. The design goals are:
• Rendering speed—algorithmic constructs were removed from the language.
• Portability—as a cross platform format, Acrobat Reader is available free of charge on major platforms.
• Compactness—The Lempel, Ziv, Welsh compressing algorithm was licensed from UNISYS for maximum com-

pression of files.1 Multiple Master font technology, partial font downloading and built-in fonts in the Acrobat
Reader lead to a minimum size for portable documents.
• WWW support—hypertext links to other documents on the Internet are allowed. PDF version 1.2 and Acrobat 3.0

(Amber) introduced a linearized arrangement of objects within PDF documents, allowing for incremental down-
loading across the Internet.
• Extensibility—documents can be extended without losing the old version; notes (stickers) can be added to docu-

ment by the readers.
• Password protection—access to a document can be protected by a password.
• Object structure—allows for access to individual pages, with possibility of one-pass generation.
• Easy exchange—ASCII (7bit) PDF files can be generated for better portability and email exchange.

PDF files can be embedded directly in an HTML page using the HTML<EMBED>tag [1]. These are becoming more
and more popular in the WWW world, as they render faithfully what the author saw (modulo color rendering and
resolution of an end-user’s display).

2.3 SGML
Roll onSGML, and real document storage.

Not just this strangePDF thing

which traps the visuals like an insect in amber. . .

James Robertson oncomp.text.pdf

SGML is a widely accepted international standard (ISO 8879) [12, 6, 3] for document markup. It is the format of
choice for document storage chosen by many publishers [22, 7, 4]. It is a language for describing markup, aimed at
long-term storage, but not at visual layout. As TEX’s typesetting engine is still the state-of-the-art, the perspective of
typesetting of SGML documents via LATEX3 with TEX based engine is a viable option.

3 Current Possibilities for Producing PDF from TEX

If PDF is required as the end format, with currently available programs one has to generate PostScript from advi file
and then to ‘distill’ (using Adobe’s Distiller program) the result to PDF. Some comments and suggestions on how to
create PDF files from TEX are collected in [16]. Problems with configuring fonts are described in [28] and [8].

1Latest news from Adobe says that ZIP compression has been added as well, leading to even better compression ratios.

–4–

The Joy of TEX2PDF—Acrobatics with an Alternative toDVI Format

Program(s) Time without Time with

compression compression (LZW)

TEX2PDF (α-test version) 1:57 2:38

TEX + dvips 5.58 + Adobe Distiller 2.1 6:34 (1:33+0:18+4:43) 6:56 (1:33+0:18+5:05)

TEX + dvips 5.58 + Aladdin Ghostscript 4.0 not applicable 40:23 (1:33+0:18+38:32)

Table 2. Speed comparison of several ways of producing PDF file (tex.pdf) from a TEX file
(tex.tex)

4 The Name of the Game

There still are countless important issues

to be studied, relating especially to the many

classes of documents that go far beyond

what I ever intended TEX to handle.

Don Knuth [20], p. 640

Motivated by a note by Don Knuth to one of the authors (private communication, 1994), who mentioned he expected
people would attempt to create derivations from TEX suitable for, e.g., outputting PostScript instead of DVI, a project
for creating PDF files directly from the TEX source has been attempted [27], introducing the possibility of creating
either DVI or PDF output. The working name of this game is TEX2PDF. An example of the TEX source taking
advantage of the new possibilities is shown in figure 1 and the resulting document as viewed with Adobe Acrobat
Reader is shown in figure 2 on page 7.

4.1 New primitives
New primitives have been introduced in TEX2PDF in order to allow for more straightforward use of hypertext features
from within TEX-like source. Most of their parameters are taken implicitly from the context of use in TEX terms, which
simplifies their use considerably. We do not specify the full syntax here, because it is not yet fully stable.

\pdfoutput changes TEX2PDF behaviour from DVI-producing mode to PDF-producing one.
\pdfannottext takes an argument which specifies the text of an annotation to be created at the current position.
\pdfannotlink , \pdfendlink allows the user to specify hypertext links with all of the link attributes available

in the PDF specification. An integer argument is used as a key to the corresponding anchor. If no link border
has been specified, it is computed for all boxes between\pdfannotlink and\pdfendlink , so the link will
automatically become multiline if line break occurs in between.

\pdfoutline allows for the generation of bookmarks; bookmarks can be hierarchically structured.
\pdfdestxyz , \pdfdestfit , \pdfdestfith , \pdfdestfitv provide specification of various types of

anchors with zooming and fitting possibilities.
\pdfdestfitr , \pdfendfitr specify the position of anchor corners. In this case, the anchor area is computed

from the corners.

4.2 Font handling
Font handling in TEX2PDF is currently limited to Type1 fonts only. Metric information is extracted from thepfb file.
Font name mapping is handled using an auxiliary font mapping configuration file introducing the list of fonts available,
together with the information on the type of font embedding and its usage.

Virtual fonts [17] are supported in TEX2PDF. As they are in fact part ofdvi files, they have to be unfolded before
PDF is output, as in today’s DVI drivers.

4.3 Compression
Compression is allowed in the PDF specification, and several types of compression filters can be used; JPEG com-
pression for color graphics, LZW and ZIP compression for text and graphics, and CCITT Group, Run Length and
LZW compression for monochrome images.

As the LZW compression algorithm is licensed by UNISYS, we cannot distribute TEX2PDF with LZW support,
but we used it for testing runs to compare TEX2PDF with Distiller (see table 1). However, the even more effective
ZIP compression will be available in PDF version 1.2, avoiding the need for LZW compression in TEX2PDF, and the
patent problems. The test figures show that TEX2PDF generated even more compact PDF file than Adobe Distiller on
standard text files.

–5–

reprinted from Baskerville Volume 6, Number 4

%% LaTeX2e file ‘t.tex’
%%
\hsize 3in
\baselineskip 13pt
\pdfoutput=1 % we will produce PDF instead of DVI
\pdfannottext

open % optional specification if the text annotation is implic-
itly opened

{The text annotation} % the text itself
\def\BL{\pdfannotlink

depth 3pt height 8pt % optional specification for link size
1 % key of destination
border 0 0 1 % optional specification for link border

}
\def\EL{\pdfendlink}
\pdfoutline

1 % key of destination
0 % number of sub-entries of this item
{The outline entry} % Text of this item

\pdfdestxyz
1 % key of this destination
zoom 2 % optional zoom factor

%\pdfdestfit 1 or %\pdfdestfith 1 or %\pdfdestfitv 1
%\pdfdestfitr 1 ... \pdfendfitr

This is \TeX, a document compiler intended to produce typesetting of
high quality. The PASCAL program that follows is the definition of
\TeX82, a standard version of \TeX\ that is designed to be highly
portable so that identical output will be obtainable on a great
variety of computers.

The main purpose of the following program is to explain the algorithms
of \TeX\ as clearly as possible. \BL As a result, the program will not
necessarily be very efficient when a particular PASCAL compiler has
translated it into a particular machine language.\EL\ However, the
program has been written so that ...
\bye

Figure 1. Example of new hypertext primitives added in the TEX2PDF source file

4.4 Graphics
\special s are not yet handled by TEX2PDF. As most of the graphics included in TEX documents are PostScript and
TIFF, at least support for the PostScript to PDF and TIFF to PDF conversion will have to be included in the future.

4.5 Implementation
The implementation of of TEX2PDF is realized as aweb change file to the latest TEX source [19]. This implies that
TEX2PDF is as portable as TEX itself is. Karl Berry’sweb2c package has been used for the development and for
producing a running Unix version. We expect easy recompilation on any Unix platform.

5 Pros and Cons

I was constantly bombarded by ideas

for extensions, and I was constantly turning

a deaf ear to everything that did not fit

well with TEX as I conceived it at the time.

Don Knuth [20], p. 640

To compare TEX2PDF with the other methods of producing a hypertext PDF document from a TEX file, we did several
testing runs. They were done on a Sun Sparc 10 under the Solaris 2.4 operating system. Measurements were done using
thetime program (CPU times are listed). We usedtex.tex , generated from the TEX source (tex.web) file, as the

–6–

The Joy of TEX2PDF—Acrobatics with an Alternative toDVI Format

Figure 2. Result of TEX2PDF source in Fig. 1 viewed in Acrobat Reader

–7–

reprinted from Baskerville Volume 6, Number 4

testing document. For the hypertext version we used a slightly changed version ofwebmac.tex (seehttp://www.
cstug.cz/~thanh/tex2pdf).

In both time and size comparisons TEX2PDF beats its competitors (see tables 1 and 2). This is mainly due to the
absence of intermediate DVI and PostScript formats in TEX2PDF, allowing for better PDF optimization. TEX2PDF is
slightly slowed down bypfb file parsing.

The users familiar with the (emacs + TEX + xhdvi (+ ghostscript)) suite of programs might want to switch to
(emacs + TEX2PDF +xpdf), thus speeding up the document debugging cycle considerably.

TEX2PDF is written inweb so that its source blends naturally with the source of TEX the program. The obvious
benefit is absolute compatibility with TEX proper; the actual code which drives the typesetting engine is that of Don
Knuth (modulowhatsits use for the hypertext primitives added in TEX2PDF). While this conformance to TEX
source greatly benefits from Don’s appreciation of stability, it makes the implementor’s life more difficult in the world
where PDF still evolves. It is also hard to debug TEX2PDF without incremental compilation. When we come to add
implementation of\special commands, maintenance will become tough.

The changes introduced in new versions of PDF are motivated by achieving better performance when handling
Acrobat documents, and so TEX2PDF is bound to have the PDF-generating modules modified or rewritten so that
maximum benefit of the features supported by PDF technology can be used. The fact that PDF specification has been
made public is crucial to success of this approach.

The TEX2PDF aproach is naturally backward compatible with TEX—in fact, if PDF output is not switched on,
it can still generate DVI output identical to that of TEX. Just by redefining some cross-referencing macros, the new
hypertext features of TEX2PDF can be instantly used even without modifying the markup of old LATEX documents.

6 Object Reuse

Using well-designed formats results

in LATEX source that clearly reflects

the document structure.

T. V. Raman [23]

With PDF, there is the possibility of taking advantage of the object structure and manipulation specified within a PDF
file to store elements of document structure (higher level document model) in the PDF file generated by the application
(TEX2PDF). Some work has been already done in this direction by defining Encapsulated PDF (EPDF) blocks and
their reuse [25]. This format, however, is not supported or used by a wide variety of applications.

The logical structure of a document model is also urgently needed in applications like AsTeR [23], whichreads
LATEX documents using a speech synthesizer. Developing an application that is able of reading aloud enriched PDF
files might become possible.

Our suggestions for further work could lead to primitives which allow handling of PDFobjectsstored in the trailer
of a PDF file indirectly. At least three primitives are foreseen:

\setpdfbox typesets its argument and stores the result as a PDF object. The reference to that object will stay in
the internal register accessible by\lastpdfbox .

\lastpdfbox returns the reference to the last stored object by\setpdfbox .
\usepdfbox This primitive puts areferenceto an object into the output stream.

7 Future Work

Few claim to know what will be the preferred

electronic format a century from now,

but I’am willing to go out on a limb

and assert that it will be none of TEX,

PostScript,PDF, Microsoft Word, nor any

other format currently in existence.

Paul Ginsparg [11]

TEX2PDF is currently under development and is available to beta testers only. We do not guarantee that the input
syntax will remain unchanged. Support for object reuse and graphics when the PDF specification 1.2 comes out may
be added.

–8–

The Joy of TEX2PDF—Acrobatics with an Alternative toDVI Format

For testing purposes, atex2pdf option for the hyperref package [15] will be written, using the hypertext possi-
bilities of TEX2PDF directly. This will allow using TEX2PDF for re-typesetting of LATEX documents just by loading
with hyperref package with thetex2pdf option in the document preamble.

Support for the full usage of Multiple Master technology remains to be added, possibly in the combination with
METAFONT [14, 13]. Extensions of the paragraph breaking algorithm [21] to take advantage of Multiple Master
fonts with a variable width axis (but constant grayness) to help justification (\emergencyfontwidthstretch)
is another possible direction of future work.

Acknowledgements

The support of TUG ’96 bursary committee is acknowledged, having allowed presentation of preliminary version of
this paper at the TUG ’96 conference in Dubna, Russia.

References

[1] Adobe. Adobe acrobat 3.0 beta.http://www.adobe.com/acrobat/3beta/main.html , 1996.
[2] Adobe Systems. POSTSCRIPTLanguage Reference Manual. Addison-Wesley, Reading, MA, USA, 1985.
[3] American National Standards Institute and International Organization for Standardization.Information processing: Text and

Office Systems: Standard Generalized Markup Language (SGML).American National Standards Institute, 1430 Broadway,
New York, NY 10018, USA, 1985.

[4] Association of American Publishers.Association of American Publishers Electronic Manuscript Series Standard for Elec-
tronic Manuscript Preparation and Markup: an SGML Application Conforming to International Standard ISO 8879–Standard
Generalized Markup Language. Version 2.0 Dublin, Ohio: Available from the Electronic Publishing Special Interest Group,
c1987. Association of American Publishers, Dublin, OH, USA, 1987.

[5] Tim Bienz, Richard Cohn, and James R. Meehan.Portable Document Format Reference Manual, Version 1.1. Addison-Wes-
ley, Reading, MA, USA, 1996.

[6] Steven J. DeRose and David G. Durand.Making Hypermedia Work. Kluwer Academic Publishers Group, Norwell, MA,
USA, and Dordrecht, The Netherlands, 1994.

[7] Andrew E. Dobrowolski. Typesetting SGML documents using TEX. TUGboat, 12(3):409–414, December 1991.
[8] Inc. Emerge. TEX and pdf: Solving font problems. |http://www.emrg.com/texpdf.html|, 1996.
[9] David Fuchs. The Format of TEX’s DVI Files. TUGboat, 1(1):17, October 1980.

[10] David Fuchs. The Format of TEX’s DVI Files. TUGboat, 3(2):14, October 1982.
[11] Paul Ginsparg. Winners and losers in the global research village.http://xxx.lanl.gov/blurb/

pg96unesco.html , February 1996.
[12] Charles F. Goldfarb and Yuri Rubinsky.The SGML handbook. Clarendon Press, Oxford, UK, 1990.
[13] Michel Goossens, Sebastian Rahtz, and Robin Fairbairns. Using Adobe Type 1 Multiple Master Fonts with TEX. TUGboat,

16(3):253–258, June 1995.
[14] Yannis Haralambous. Parametrization of Postscript Fonts throughMETAFONT—an Alternative to Adobe Multiple Master

Fonts.Electronic Publishing, 6(3):145–157, April 1994.
[15] Yannis Haralambous and Sebastian Rahtz. LATEX, Hypertext and PDF, or the Entry of TEX into the World of Hypertext.

TUGboat, 16(2):162–173, June 1995.
[16] Berthold K. P. Horn. Acrobat pdf from TEX. http://www.YandY.com/pdf_from.pdf , 1996.
[17] Donald Knuth. Virtual Fonts: More Fun for Grand Wizards.TUGboat, 11(1):13–23, April 1990.
[18] Donald E. Knuth.The TEXbook, volume A ofComputers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986.
[19] Donald E. Knuth.TEX: The Program, volume B ofComputers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986.
[20] Donald E. Knuth. The Errors of TEX. Software–Practice and Experience, 19(7):607–685, 1989.
[21] Donald E. Knuth and Michael F. Plass. Breaking paragraphs into lines.Software–Practice and Experience, 11:1119–1184,

1981.
[22] Sebastian P. Q. Rahtz. Another Look at LATEX to SGML Conversion.TUGboat, 16(3):162–173, September 1995.
[23] T. V. Raman. An Audio View of TEX Documents.TUGboat, 13(3):372–379, October 1992.
[24] Tomas G. Rokicki. A proposed standard for specials.TUGboat, 16(4):395–401, December 1995.
[25] Philip N. Smith. Block-Base Formatting with Encapsulated PDF. Technical Report NOTTCS-TR-95-1, Department of

Computer Science, University of Nottingham, January 1995.http://www.ep.cs.nott.ac.uk/~pns/pdfcorner/
complete.pdf .

[26] Mike Sofka. Dvi driver implementation and standardization issues. available ashttp://www.rpi.edu/~sofkam/
DVI/dvi.html , 1996–.

–9–

reprinted from Baskerville Volume 6, Number 4

[27] Han The Thanh. Portable document format and typesetting system TEX (in Czech). Master’s thesis, Masaryk University,
Brno, April 1996.

[28] Kendall Whitehouse. Creating quality Adobe pdf files from TEX with dvips. http://www.adobe.com/
supportservice/custsupport/SOLUTIONS/3a26.htm , 1996.

–10–

II LATEX, dvips , EPS and the web. . .

Sebastian Rahtz

Elsevier Science Ltd

The Boulevard, Langford Lane

Kidlington

Oxford, UK

s.rahtz@elsevier.co.uk

Summary
Browsers of TEX questionfora like comp.text.tex will often be asked what are the issues surrounding Encapsu-
lated PostScript, and how one goes about making EPS files from LATEX output, and maybe using them on the World
Wide Web. This short note2 offers some suggestions.

1 What and why is EPS?

EPS stands for Encapsulated PostScript; EPS filesare PostScript, but they conform to a minimum standard of good
behaviour. This is so they can be included in other documents, possibly resized or rotated. In practice EPS means not
using certain commands which have global effects (don’t worry, this is quite rare), and inserting structured comments
(starting with%%) which tell other programs something about the file. ThePostScript Language Reference Manual
goes into great depth describing what these comments can contain, but the minumum that is necessary for practical
purposes are:

1. A first line starting%!PS-Adobe ; dvips, for instance, puts%!PS-Adobe-2.0 EPSF-2.0 in its output, mean-
ing that it claims conformance with version 2 of the EPS standard (we are now at version 3);

2. A ‘BoundingBox’, like %%BoundingBox: 33 101 584 715 which tells applications how much space on
the page is occupied.

How do you turn PS files into EPS files? They probably are already, if they come from a reputable bit of software
(avoid anything from MicroSoft)—a good check is to see if there is a BoundingBox.

You will come across three types of problem with files that look like EPS. Firstly, the BoundingBox may not
be accurate; since this determines how much space will be left in enclosing applications like TEX, it matters. Keith
Reckdahl’s recent tutorial inTUGboatgoes into detail on this problem.

Secondly, your file may beseriousEPS, and use all the facilities of structured comments to specify what sort of
resources (fonts etc) it expects you to supply when you deal with it. This is bad news if you are in TEX world outside
a Macintosh. Look out for lines with words likeProcSetsNeeded .

Thirdly, your file may think it is EPS, but in fact breaks the rules, and has weird PostScript in it. The rescue
technique is to read it with a forgiving PostScript interpreter, and get a new version written out. Three programs to try
are:

1. Adobe Acrobat Distiller; this turns PostScript files into PDF, and Acrobat Exchange can then load them, and save
them as ordinary PostScript. Since it is written by Adobe, Distiller is an extremely powerful PostScript interpreter,
and can cope with almost anything you throw at it. It is not cheap (except to academics), but worth having.

2. Recent versions of Adobe Illustrator share some of the Acrobat code, and can read PostScript files, as well as edit
PDF files.

3. The free Ghostscript is now a very mature and sophisticated product. It understands all of the current Level 2
PostScript, and can turn it onto a wide variety of bitmap forms. Version 4 (released in June 1996) also performs
many of the functions of Distiller, and it already reads PDF files and writes PostScript. Unfortunately, its handling
of PostScript text to PDF is at present unfinished. However, you can still use Ghostscript to read your PostScript
and write it out again as a bitmap (e.g. TIFF).

2Reprinted fromTUGboat16(3) with kind permission of Barbara Beeton.

reprinted from Baskerville Volume 6, Number 4

reprinted from Baskerville Volume 6, Number 4

��0

@

@'
(�1asin')� �1

@

@'
(�0asin')� A1

�
�0 +

@

@a
(a�0)

�
sin ' = �a�0f sin '

(1)
Figure 1. Bitmap EPS file, enlarged and distorted

−Φ0
∂

∂ϕ
(Φ1asinϕ)− Φ1

∂

∂ϕ
(Φ0asinϕ)− A1

[
Φ0 +

∂

∂a
(aΦ0)

]
sin ϕ = −aΦ0f sin ϕ

(1)
Figure 2. Outline font EPS file, enlarged and distorted

2 What about dvi to Encapsulated PostScript?

Most TEX systems, free or commercial, supply advi to PostScript driver; most of them write out more or less
acceptable Encapsulated PostScript, but three are especially well-featured (in the author’s experience): the Macintosh
Textures driver, Y&Y’sdvipsone for Windows and the freedvips. Since the latter is available for all platforms, is
well-supported, and is probably the finest of its type,3 we shall concentrate on that.

If you want to produce re-useable PostScript output fromdvips (and this includes output destined for Acrobat
Distiller), the absolute priority is to use outline fonts, not the PK fonts traditionally used by TEX. You can either use
traditional fonts (usually commercial, like Adobe Times, but Ghostscript now comes with an excellent free set donated
by URW) or Computer Modern itself in PostScript Type 1 format. Either buy these from Y&Y for Windows and Unix
or Blue Sky for Macintosh, or use Basil Malyshev’s BaKoMa set, of almost comparable quality.4

If you do not use outline fonts, and re-use your output scaled up, you will not like the effect of Figure 1 at all,
compared to Figure 2. If you want to turn your documents into PDF, Distiller will produce vile results from PK fonts.

The second priority is to get the right bounding box. Surprisingly many applications cheat by simply making it the
page size, regardless of whether the whole area is used.dvips does this by default too, but has a command-line option
-E , which asks it to try and calculate the actual extent used. Note that EPS files are, by definition, only one page, so
you also have to usedvips options to select just one page. There are two caveats when preparing the input. Firstly,
make sure you do not include a page number (try\pagestyle{empty} in LATEX), or else the bounding box will
cover that too. Secondly,dvips does not always work out the extent of text correctly. For instance, if you wrote (why,
I have no idea):

Hello\raisebox{10pt}[0pt][0pt]{Up there}!

you would be asking LATEX to raiseUp thereoff the baseline, but to pretend that it has no effect on the height cal-
culation.dvips will believe this, and calculate a bounding box on theclaimedheight. If you use complicated add-in
packages like PSTricks, which add in arbitrary PostScript code, you will also end up in real trouble. In these cases you
can either adjust the BoundingBox by hand, or place invisible marks in LATEX to make sure thatdvips recognizes the
full extent.

A useful trick to remember if you think that TEX knows what you want, butdvips does not, is to make judicious
use of color. Suppose you wanted to use PSTricks to encircle a mathematical symbol, you might write:

absurd \pscirclebox{\surd}

3For several years,dvipsone has offered partial downloading of fonts, a very powerful feature, but this is now coming intodvips; there are also
flaws indvips’ use of structured EPS comments, and Textures is superior in this respect.

4Windows-worshippers may prefer to get into the world of TrueType fonts, which are available for Computer Modern from Kinch Computer
Company.

–12–

LATEX, dvips, EPSand the web. . .

TEX leaves the right space, since the PSTricks macros understand what is going on, butdvips is told to draw the circle
in raw PostScript, and the bounding box calculation ignores that. The result is that the limits are set just around the
size of the letters. If we wrote:

\framebox{absurd \pscirclebox{\surd}}

it would work correctly, becausedvips would look at the enclosing frame, not just the words. But you end up with an
unwanted box; so make it (in effect) invisible by writing:

{\color{white}\fboxsep{0pt}%
\framebox{%

{\color{black}absurd
\pscirclebox{\surd}}%
}%

}

This creates a white frame around black text; LATEX proceeds happily, and so doesdvips, calculating the right extents,
but nothing shows on paper. Obviously, this only works in a monochrome environment.

3 LATEX to EPS to GIF to Web

Why do we do all this in practice? Often, these days, because people want their LATEX mathematical output on the
World Wide Web, and their only recourse is to embed GIF images in their HTML. The sophisticatedlatex2html
program does all this for you; its technique is worth understanding, as it has general utility; the sequence of events is:
1. Place bits of LATEX in an special file, one fragment per page, and with no page numbers;
2. Run LATEX to generate a multi-pagedvi file;
3. Usedvips’ -i and-S options to generate one self-contained output file per page;
4. Give each page to Ghostscript, and ask it to render them in PBM (Portable Bitmap) form;
5. Use the PBMplus/Netpbm utilitypnmcropto trim away white space;
6. Use theppmtogifutility to convert the result to a GIF image.
Note that it doesnot use the-E option fordvips, but relies on simply removing all white pixels until just text is left.
This has the advantage that it avoids the problem we saw in the last section, but it has three disadvantages:
1. The PBM utilities are primarily Unix tools, and many people do not have access to them;
2. The cropping process is memory-intensive, slow and eats temporary disk space;
3. The cropping forces everything to the baseline, effectively. A character like em-dash (—) which sits above the

baseline, will be cropped above and below, so that the placed GIF looks wrong.

The core of the problem is the use of Ghostscript, which always creates a page-sized bitmap, even if there is only one
word on the page. What we want is for Ghostscript to render just the portion of the image inside the bounding box,
if we do use the-E flag for dvips. We can achieve this by giving Ghostscript a customized page size, which is the
size of the bounding box. Then we can insert some extra PostScript code to move the image so that it starts at the 0,0
coordinate (adjusting the bounding box accordingly). Ghostscript then displays or converts the image just within the
desired area, and no cropping is needed.

The transformations of the bounding box can be achieved usingepsffit, which is part of Angus Duggan’spsutils
collection (CTAN:support/psutils); the page size change is most easily done using a Level 2 PostScript oper-
atorsetpagedevice . Thus a PostScript file which starts:
%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 135 528 284 668
...

needs to be transformed to something like:
%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 149 140
<< /PageSize [149 140] >> setpagedevice
gsave -135 -528 translate
...
grestore

Here we have worked out the width and height of the enclosing rectangle (149× 140 units), moved the origin down to
0,0 on the page, and set the page size. PostScript purists will shudder at thesetpagedevice command, and point

–13–

reprinted from Baskerville Volume 6, Number 4

#!/usr/local/bin/perl
$bbneeded=1;
$bbpatt="[0-9\.\-]";
while (<>) {

if (/%%BoundingBox:(\s$bbpatt+)\s($bbpatt+)\s($bbpatt+)\s($bbpatt+)/)
{

if ($bbneeded) {
$width = $3 - $1;
$height = $4 - $2;
$xoffset = 0 - $1;
$yoffset = 0 - $2;
print "%%BoundingBox: 0 0 $width $height\n";
print "<< /PageSize [$width $height] >> setpagedevice\n";
print "gsave $xoffset $yoffset translate\n";
$bbneeded=0;

}
}
else { print; }
}
print "grestore\n";
};

Figure 3. A Perl script to transform an EPS file for Ghostscript

Figure 4. LATEX → dvi → EPS→ GIF

Figure 5. LATEX → dvi → EPS→ GIF, anti-aliased

Figure 6. Mid-aligned GIF image in Netscape

out that this is probably illegal in Encapsulated PostScript, but as long as we only use this file strictly in the controlled
environment of Ghostscript, we are safe enough. Figure 3 lists a simple Perl script which performs the necessary
changes to a PostScript file for Ghostscript to eat, without any need forepsffit.5

5I am aware that it does not cope with an(atend) bounding box. . .

–14–

Newsletters with LATEX

Now that Ghostscript is only rendering the desired area, we can use its builtin bitmap output facilities. The Unix or
DOS command line:

gs -dNOPAUSE -q -r100 -sDEVICE=tiffg4 \
-sOutputFile=foo.tif foo.ps -c quit

will generate a TIFF fax group 4 image (Ghostscript does not support GIF output directly, for legal reasons) at 100dpi
of just the imaged area of the PostScript filefoo.ps with no further ado. Ghostscript version 4 adds anti-aliasing
facilities; using the Netpbm tools under Unix, we can create a variant GIF image, using the command line:

gs -r100 -dNOPAUSE -q -sOutputFile=- \
-sDEVICE=pnm -dTextAlphaBits=4 \
-dGraphicsAlphaBits=4 foo.ps -c quit | \
ppmtogif -interlace \
-transparent \#ffffff > \
equation.gif

Figures 4 and 5 show the result of transformations with and without anti-aliasing.
There is one remaining problem — the World Wide Web browsers can usually align images top, middle or bottom;

but what if we have an image of some characters with descenders below the base line? Bottom alignment of the images
places the bottom of the descenders on the baseline; top alignment is riduculous, and middle alignment is not quite
right either. The answer is to use middle alignment, and make TEX lie to dvips (and thence down the chain) about the
extent of the character; making its depth equal to its height, and then middle aligning it in the Web browser, has the
desired effect. So how do we make TEX lie? Here is my suggestion:

\newsavebox{\@Fragment}
\def\Fragment#1{%

\savebox{\@Fragment}{#1}%
\@tempdima\ht\@Fragment
\@tempdimb\dp\@Fragment
\ifdim\@tempdima>\@tempdimb

\dp\@Fragment\@tempdima
\else

\ht\@Fragment\@tempdimb
\fi
\fboxsep0pt
\color{white}%
\fbox{%
{\color{black}%

\box\@Fragment}%
}%

}

I use the LATEX box framing command to ensure thatdvips thinks the depth is there, with the same color trick as we
saw earlier.

Unfortunately, there is a side effect — an HTML browser loading the resulting GIF image mid-aligns the image
and sticks the ‘ballast’ white space into the line below, making an unsightly gap (see Figure 6, where the Greekηs
have a small descender). With the current browser technology, there is little than be done about this. In practice, we
will have to check first whether thereis any descender; if so, we use the mid-align technique, and accept the gap; if
there is not, we can make a simpler process and use bottom alignment.

It is imperative, of course, that Web-making readers do not take these examples as ‘recipes’, without both a precise
specification of the desired Web page, or an understanding of some of the basic image-processing techniques. The aim
here has simply been to show how relatively trivial and efficient it is to create bitmap output from LATEX anddvips
using the free facilities of Ghostscript.

–15–

III Newsletters with LATEX

Andrew F. Lack

City University

Summary

I have typeset newsletters for 4 different organisations over the past three years using LATEX. This article outlines some
of my experiences of using LATEX to produce them.

LATEX and TEX were never designed to produce artwork for newsletters. And yet their flexibility, together with some
clever minor style files, means that a very acceptable product can be produced. Just take a look atBaskervilleto see
this.

For the last three years I have typeset the newsletter of City University’s Computing Services department. Prior
to my involvement the usual mixture of software—and consequent styles—were tried. Packages like MicroSoft Word
and Ventura Publisher were used.

I was convinced that, despite its rather formal page layout, LATEX could be used to produce a good newsletter and
after eight issues I’m still convinced. Besides, when I took the newsletter on I wasonlygoing to use LATEX.

1 Text Columns

A newsletter, particularly one printed on A4 paper, is going to require multiple columns—probably 2 or 3. Because of
the necessity to mix multi and single columnar styles on a page (single column for article headings), the minor style
file multicol is more-or-less an essential starting point. However, themulticol style does have some limitations, most
notable only allowing full textwidth floats. This complicates the placement of items such as tables and illustrations
which are column-width, and these must be defined in the document at a fixed position.

With DTP packages, boxes or frames are defined where illustrations are to appear on the page, the text automagi-
cally flowing around them. This design not only simplifies the placement of illustrations, but also allows illustrations
to be placedbetweencolumns—a popular way of including a photograph of the author, for example, at the start of an
article. This isn’t possible with LATEX.

However, given these limitations typesetting articles with column-width illustrations is quite straight forward. The
placement of these is probably best left to near the end of the typesetting process, adding them to the file starting at
the beginning and working towards the end, checking page breaks as you go.

2 Short Articles

Using the rather formal full-width heading above a short article (perhaps using only one quarter of the page depth)
looks rather odd. For short articles consider setting them in a box of width 0.75 or 0.8 of the full text width. Using box
styles from the minor style filefancybox adds emphasis to the design. Another useful technique is to place a 5% or
10% gray tint behind the box using thepsboxit minor style. If you do this avoid the fancy box styles and stick to the
good old plainfbox , as the background PostScript shading extends beyond the box boundaries forshadowbox and
doublebox and this look rather odd.

3 Graphics

Despite the fact that I produce final artwork using PostScript, I prefer working with graphics using thebm2font system,
which converts graphics to TEX fonts. This has the advantage of producing images which are viewable using standard
dvi previewers and they print much faster than encapsulated PostScript versions do.

Bm2font handles a wide variety of popular (PC) bitmap formats, including PCX and GIF.
If you are looking for copyright-free clip art, then take a look at the publications ofThe Dover Press. These US

publications are available from stockists in the UK and are priced at around £5–6 per book.

reprinted from Baskerville Volume 6, Number 4

An introduction to PSTricks, part 4

4 Starting Articles

With ideal copy new articles will start at the top of a new page, with minimal wastage on the previous. However this
rarely happens. The heading for an article is a key part of the typographic design of the newsletter. When the reader
reaches the bottom of a column, below which a new article begins, the typography must make it clear that the reader
should move up to the top of the page to continue.

A clear break under the previous article is required, together with a device which extends across the page. I leave
a gap of 3em before printing the new article’s heading. Under the heading I like to use textwidthshaded face rule(a
rule of 0.2pt, gap of 2pt and a rule of 1pt) underneath the new article’s title.

Deciding where to start a new article can be tricky. Luckily themulticols environment takes some optional argu-
ments, one of which allows you to specify the minimum space which must remain on the page before starting the new
environment. The other optional argument is text which is set full-width. This is where the article’s heading can be set.

A typographic embellishment for the start of the article is common. Two are often employed; a large initial capital,
possibly a dropcap, or setting the first three of four words in small caps. I like using dropcaps (which can be type-
set using TEX’s \hangindent and \hangafter). However, this has the disadvantage of making the entire first
paragraph an unbreakable box, so only use this technique if you have sufficient vertical space on the page.

5 Page Breaks

This is without doubt the most difficult aspect of newsletter construction. Due to the rather ‘lumpy’ nature of the copy,
(particularly if your articles have many illustrations), LATEX will occasionally have problems finding good page breaks.
LATEX2e’s \enlargethispage helps a little here. [Well, being a 2.09 user I assume so.]

Sometimes bad page breaks can be avoided by making the copy slightly longer. This can be neatly achieved by the
command\looseness=1 within a longish paragraph. It’ll cause TEX to increase the length of the paragraph by one
line by loosening the glue. Do this a couple of times in an article and this may just be enough. Of course you could
even do some copy-editing.

6 Typefaces

Computer Modern for a newsletter? No. Computer Modern has too much of a technical look about it and here in Britain
we tend not to like Modern book faces, preferring the Oldstyle instead—faces like, well Baskerville and Garamond.

However for City University’s newsletter I useLucida Bright. I find it renders well on a 300dpi HP3Si laser printer,
giving a clean black copy which our Print Room can work with. Computer Modern is too spidery on the 3Si. For
display work (such as the article titles) I like New Century Schoolbook italic, and Bookman bold italic makes a good
mast-head face.

–17–

IV An introduction to PSTricks, part 4

Sebastian Rahtz

Elsevier Science Ltd

The Boulevard, Langford Lane

Kidlington

Oxford, UK

s.rahtz@elsevier.co.uk

This article concludes my look atPSTricks. I hope you have enjoyed the show! The material has been drawn from a
forthcoming book, entitledThe LATEX Graphics Companion, by Michel Goossens, Sebastian Rahtz and Frank Mittel-
bach, to be published by Addison Wesley in 1997. If you have enjoyedBaskervillearticles in the last couple of years
on Seminar, colour in LATEX, andPSTricks, you may find the book of interest.

In this final part, we look briefly at data plotting, and then conclude with some finished examples ofPSTricks,
which are designed to show the power of the macros in unusual ways.

1 Data plotting

PSTricks has a set of high-level tools for common data-plotting functions; these can read data from external files, in
a variety of formats. We will not tabulate the extra commands or graphical parameters this time, as they can be easily
found in thePSTricks documentation. The simplest form of data is a set of comma or white-space delimited numbers,
but values can also be enclosed in braces ({}) or round brackets (()). If the data is enclosed in a single set ofsquare
brackets ([]), and the opening[is at the start of a line, it will be read much faster; however, it will run TEX out of
memory sooner. Data can also be read once, and then re-used, with the\readdata and\savedata commands.
There is an important distinction between\fileplot or \dataplot which parse and validate the data in TEX,
and\listplot , which simply passes the data on to POSTSCRIPT; the latter approach means that there is no check
on POSTSCRIPT memory requirements, but has the advantage that raw POSTSCRIPT can be provided to generate or
manipulate the data. Just to complicate matters, use of the\PSTtoEPS command with the plotting commands can
allow for even bigger datasets. An example of this is given below, in section 2.

It is important to realize that it is up to the user to check the data extents and scaling;PSTricks does not make the
data fit a predefined plot area, unlike many other packages. Normally, judicious setting ofxunit andyunit will
quickly produce nice results. Axes are generated separately, and there is no provision for supplying specific labels for
axis tick points. It is, on the other hand, easy to superimpose multiple plots, and use the POSTSCRIPT language to
calculate functions, as the following example shows, overlaying sin(x), sin(x)cos(x) and cos(x).

\begin{pspicture}(-1,-2.5)(9,2.5)
\psset{xunit=.20mm,yunit=1.75cm}
\psset{plotpoints=50}
\psplot[linestyle=dashed,linecolor=blue]

{0}{360}{x sin}
\psplot[plotstyle=dots,dotstyle=triangle]

{0}{360}{x cos}
\psset{plotpoints=200}
\psplot[linecolor=red]{0}{360}

{x dup sin exch cos mul}
\end{pspicture}

reprinted from Baskerville Volume 6, Number 4

An introduction to PSTricks, part 4

ututut
ut
ut
ut
ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut
ut
ut
ut
ututututut

ut
ut
ut
ut
ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut
ut
ut
ut
ututut

The next example shows how the\psaxes command can be used to create graph frames; in this mode, it obeys
the graphical fill and colour parameters. This picture (showing word length (x axis) against occurrences (y axis) in a
passage of Dickens) also shows how the axis labels can be manipulated.

\readdata{\foo}{words.dat}
\psset{yunit=.2mm,xunit=4mm}
\begin{pspicture}(-2,-50)(20,250)
\psaxes[axesstyle=frame,dy=50\psyunit,

Dy=50,tickstyle=bottom,
fillcolor=gray,fillstyle=solid](1,1)(18,229)

\dataplot[plotstyle=line,linecolor=white]{\foo}
\end{pspicture}

0 1 2 3 4 5 6 7 8 9 1011121314151617
0

50

100

150

200

PSTricks is not designed to be a fully-fledged business graphics package; its plotting functions are really for simple
scientific plots only. However, it should be clear that the lower-levelPSTricks macros, and TEX’s programmability,
make it a good basis for whatever graphing is needed. We conclude this section with a crude pie chart, with the macros
and some of the data used to create it; note that only segments above a certain size are labelled — providing a sensible
label for all elements would involve considerably more care. Denis Girou has written a generalised pie-chart and bar
chart creation package forPSTricks (under revision at the time of writing), which can produce very professional
results.

–19–

reprinted from Baskerville Volume 6, Number 4

French

Latin

Russian

Italian

German

unknown

English

\usepackage{calc,pstcol}
\newcommand{\lang}[4]{% name, value, proportion of

% 10000, colour
\setcounter{thisval}{\value{lastval}}
\addtocounter{thisval}{#3}
\pswedge[fillcolor=#4]{1}{\thelastval}{\thethisval}%
\setcounter{thishalf}{((\value{thisval}-

\value{lastval})/2)+
\value{lastval}}

\ifnum#3>200\rput(1.3;\thethishalf){#1}\fi
\setcounter{lastval}{\value{thisval}}

}
\psset{fillstyle=solid}
\degrees[10000]
\SpecialCoor
\setcounter{lastval}{0}
\lang{Romanian}{1}{3}{green}
\lang{Czech}{2}{6}{blue}
...
\lang{German}{508}{1421}{lightblue}
\lang{unknown}{599}{1676}{red}
\lang{English}{1462}{4085}{yellow}

2 PSTricks programming examples

In the following pictures, we attempt to show some of the range ofPSTricks possibilities, demonstrate the advantages
of using a programming language for drawing pictures, and explore the various tools for simplifying and modularizing
the code to make it more readable. We are especially glad to acknowledge Denis Girou for his input to this section,
both in personal exchanges and in published examples.

In the first picture, a kite drawing from a child’s book of colours and shapes, notice how the tail is drawn as a curved
node connection between two points, and the bunting is added as labels on that connection. Use of the node feature
means that the calculation of the line and positions along it are left entirely toPSTricks. It is also worth recalling
the basic POSTSCRIPT premise that objects are opaque unless otherwise stated; this means that we can draw a blue
background to the whole picture, and then overlay solid blocks of colour for the shapes. Some parts of the picture have
a regular, repeating, feature, and we take advantage of this to draw the rays of sun using the\multido macro; note
that we use a TEX group to localize the effect of the\psset which changes colour and style.
\begin{pspicture}(10,8)
\psset{fillstyle=solid,linestyle=none,linewidth=0}
\psframe[fillcolor=lightblue](10,8)
% sun
\pscircle[fillcolor=yellow](2,6){.8}
% rays

–20–

An introduction to PSTricks, part 4

{%
\psset{linecolor=yellow,linestyle=solid,

linewidth=.3}
\degrees[8]
\multido{\i=1+1}{8}{\rput{\i}(2,6)

{\psline(1,0)(1.5,0)}}
}%
% grass
\pspolygon[fillcolor=green](6,0)(10,2)(10,0)
% kite
\psdiamond[fillcolor=red,gangle=-45](8,6)(1.5,2.5)
\rput{45}(8,6){\pnode(-2.5,0){Kitetail}}
\rput{-10}(.8,1.5){\psdiamond[fillcolor=yellow]

(.6,.1)(.6,.3)}
\rput{-80}(.8,1.5){\psdiamond[fillcolor=yellow]

(.6,.1)(.6,.3)}
\pnode(.8,1.5){Tailend}
\nccurve[fillstyle=none,angleA=270,angleB=125,

ncurvB=.9,ncurvA=1.4,linestyle=dotted,
dotstyle=square,linewidth=.25]{Kitetail}{Tailend}

\newcommand{\bunting}{\pstriangle(.35,.35)}
\psset{fillcolor=red,labelsep=.01}
\naput[nrot=115,npos=.15]{\bunting}
\nbput[nrot=25,npos=.15]{\bunting}
\naput[nrot=75,npos=.4]{\bunting}
\nbput[nrot=115,npos=.4]{\bunting}
\naput[nrot=115,npos=.7]{\bunting}
\nbput[nrot=25,npos=.7]{\bunting}
\end{pspicture}

In the next child’s picture, we again take advantage of the strikeout nature of POSTSCRIPT blocks of solid colour to
draw the cat head as a whole circle, and superimpose the wall (and on top of that the bricks) so that we do not worry
about creating a precise wedge of just over a semicircle.\rput is used extensively to place objects at an angle. The
writing on the bricks demonstrates the importance of understanding the reference point of objects that are placed.
Since the bricks and their legends are drawnafter the graffito, they partly obscure it. We group objects of similar
characteristics together, and use TEX’s standard grouping to setPSTricks values for the items in that group. We also
break the picture into different elements, describe each in a separate macro, and group them into high-level objects.
This technique allows us to built up a library of objects, and serves to make the final picture description considerably

–21–

reprinted from Baskerville Volume 6, Number 4

more readable. The cat sitting on its portion of wall sets its size according to a parameter, allowing us to reproduce it
several times at different sizes; note how the\rput command resets the coordinate system, so that the cat is drawn
relative to the position of the\rput .

\DeclareFixedFont{\curly}{T1}{pzc}{m}{it}{30}
%
% The cat is designed to appear on a 10 x 10 grid
% cat head
\newcommand{\Cathead}{%

\pscircle[fillcolor=black](5,4.2){2.5}%
% ears

{%
\psset{linecolor=black,fillcolor=pink,linewidth=.05,

linestyle=solid}
\rput{45}(5,4.2){\pspolygon(2.5,.5)(2.5,-.5)(3.5,0)}
\rput{135}(5,4.2){\pspolygon(2.5,.5)(2.5,-.5)(3.5,0)}

}%
}
% eyes, nose and whiskers
\newcommand{\Catface}{%

\pscircle[fillcolor=yellow](4,5.2){.5}
\psdiamond[fillcolor=gray](4,5.2)(.2,.5)
\pscircle[fillcolor=yellow](6,5.2){.5}
\psdiamond[fillcolor=gray](6,5.2)(.2,.5)

% nose
\rput{180}(5,4.6){\pstriangle[fillcolor=pink](.5,.5)}
% whiskers
{%

\psset{linecolor=white,linestyle=solid,linewidth=.1}
\rput{5}(5,4.2){\psline(.8,0)(1.8,0)}
\rput{15}(5,4.2){\psline(.8,0)(1.8,0)}
\rput{165}(5,4.2){\psline(.8,0)(1.8,0)}
\rput{175}(5,4.2){\psline(.8,0)(1.8,0)}

}%
}
% paws
\newcommand{\Catpaws}{%

\pscircle[fillcolor=black](1,4.2){.8}
\pscircle[fillcolor=black](9,4.2){.8}

% claws
{%

\psset{fillcolor=yellow}
\newcommand{\clawsize}{.4,.4}
\rput{180}(1,4.4){\pstriangle(\clawsize)}
\rput{180}(1,4.4){\pstriangle(-.45,0)(\clawsize)}
\rput{180}(1,4.4){\pstriangle(.45,0)(\clawsize)}
\rput{180}(9,4.4){\pstriangle(\clawsize)}
\rput{180}(9,4.4){\pstriangle(-.45,0)(\clawsize)}
\rput{180}(9,4.4){\pstriangle(.45,0)(\clawsize)}

}%
}
% wall
\newcommand{\Wall}{%

\psframe[fillcolor=brown](0,0)(10,4)
}
% The whole cat on its wall
\newcommand{\Cat}[1]{%

{\psset{unit=#1}
\Cathead\Catface\Catpaws\Wall}%

}
% bricks
\newcommand{\Bricks}{%

–22–

An introduction to PSTricks, part 4

\bfseries\large
\psset{fillcolor=wheat}
\psframe(1,.4)(2.5,1.9)
\rput[bl](1.1,1){\LaTeX}
\psframe(5,.4)(6.3,1.9)
\psframe(7,.4)(8.5,1.9)
\psframe(2,2.2)(3.2,3.7)
\rput[bl]{90}(2.6,2.4){\normalsize$e=mc^2$}
\psframe(5.3,2.2)(8,3.7)
\rput[bl](5.4,2.8){\textsc{PostScript}}

}
\begin{pspicture}(10,8)
\psset{fillstyle=solid,linestyle=none,linewidth=0}
\psframe[fillcolor=lightblue](10,8)
\Cat{1}
\rput[bl]{5}(1,1){\curly\color{white}

Don Knuth Rules OK}
\Bricks
\rput(7,1){\Cat{.1}}
\rput(.1,2){\Cat{.15}}
\end{pspicture}

Don Knuth Rules OK
LATEX

e
=

m
c2

POSTSCRIPT

The third complete picture is more complex, a circuit diagram. We have chosen to make this by programming a small
language for circuit diagrams, which implements the actions\Battery , \Resistor , \Switch and\Inductor ,
with the movement commands\Up , \Down \Left , and\Right in the spirit ofpic. Thus the final part of the input
is quite simple, apart from the node connection and label commands which are used in their normal way (some care is
needed to consider the angles at which connection lines leave and join each node).
\Up{1}
\Battery{A}
\Up{1}
\Right{2}
\Resistor{B}
\Right{1}
\Down{.3}
\Inductor{C}
\Down{.5}
\Left{1}
\Switch{D}

–23–

reprinted from Baskerville Volume 6, Number 4

Figure 1. Autocad picture converted toPSTricks macros

\ncangle[angleA=90,angleB=180,armB=0]{A}{B}
\ncangle[angleA=0,angleB=90,armB=0]{B}{C}
\ncput[ref=l]{~~~$i=i_{\mbox{max}}(1-w^{-t/3})$}
\ncangle[angleA=-90,armB=0,angleB=0]{C}{D}
\ncangle[angleA=180,armB=0,angleB=-90]{D}{A}
\nput{180}{A}{10V}
\nput{90}{B}{R}
\nput{0}{C}{3mH}
\nput{270}{D}{S}

[coilarm=.01,coilwidth=.3](0,.15)(1,.15)

[coilarm=.01,coilwidth=.3](.15,0)(.15,1)

i = imax(1−w−t/3)

10V

R

3mH

S
The new commands are implemented in terms of a currentx andy coordinate, which is changed by the movement

commands. Thus\Down is defined (simplified) in the following code:
\newcommand{\Down}[1]{%

\setcounter{CurY}}{-#1}%
\def{Cirdirection}{3}%
}

After each movement the current direction of movement is recorded, since this affects how we draw the new
objects. These have a switch (which we have simplified in the following code example6) to check direction. The plain
TEX \ifcase command is used to perform a 4-way switch between directions. The definition of the resistor is:

6since we possibly want sizes to be real numbers,\CurX and \CurY are in fact TEX dimensions, which we convert back to numbers before
use.

–24–

The javaTEX project & web2java

\newcommand{\Resistor}[1]{%
\ifcase\Cirdirection % right

\rput[l](\CurX,\CurY){\rnode{#1}{%
\pszigzag[coilarm=.01,coilwidth=.3](0,.15)(1,.15)%
\MyBox{1}{.3}}}%
\addtocounter{CurX}{1}%

\or % left
\addtocounter{CurX}{-1}%
\rput[l](\CurX,\CurY){\rnode{#1}{%
\pszigzag[coilarm=.01,coilwidth=.3](0,.15)(1,.15)%
\MyBox{1}{.3}}}%

\or % up
\rput[b](\CurX,\CurY){\rnode{#1}{%
\pszigzag[coilarm=.01,coilwidth=.3](.15,0)(.15,1)%
\MyBox{.3}{1}}}%
\addtocounter{CurY}{1}%

\or % down
\addtocounter{CurY}{-1}%
\rput[b](\CurX,\CurY){\rnode{#1}{%
\pszigzag[coilarm=.01,coilwidth=.3](.15,0)(.15,1)%
\MyBox{.3}{1}}}%

\fi
}

The macro\MyBox is very important; since by itself\pszigzag takes no space, it will create a node with no
width or height, and connectors will go right to the middle. Therefore we put in some LATEX struts with the\rule
command, to create an invisible box around the zigzag. ThePSTricks units are converted to normal TEX lengths using
\pssetlength .
\newlength{\Cirtemp}
\newcommand{\MyBox}[2]{% width,height

\pssetlength{\Cirtemp}{#1}%
\rule{\Cirtemp}{0pt}%
\pssetlength{\Cirtemp}{#2}%
\rule{0pt}{\Cirtemp}%

}

Our final example takesPSTricks into another subject area, that of cartography. The map in Figure 1 is created
from an Autocad DXF file; this time the 36 polygons, comprising 9619 separate line segments, were converted (using
a simplead hocconversion program) to a separate coordinate data file for each polygon. The overall map description
consists simply of 36 lines of the form:
\ProcessVector{moh174}
\ProcessVector{moh170}

Since the number of coordinates is so large, many of thePSTricks tools which can read the files (like\fileplot) run
out of TEX memory; however, for purely graphical objects like polygons, we have the more efficient and less memory-
intensive option of writing Encapsulated POSTSCRIPT files on the fly, so we instantiate the\ProcessVector lines
with the definition:
\newcommand{\ProcessVector}[1]{%

\PSTtoEPS{#1.eps}{\fileplot{#1.dat}}
\rput(0,0){\includegraphics{#1.eps}}%

}

The command\PSTtoEPS takes two arguments, a filename, and any purePSTricks commands (i.e.not text). Instead
of embedding the necessary POSTSCRIPT as\special s in the TEX output, a POSTSCRIPT file is written directly.

Using the very simple top level\ProcessVector command means that the master file is easily hand-edited;
since the Autocad file identifies the polygons by their ‘layer’ (the map is a set of contour lines), we are able to set the
fill colour separately for each layer, and so produce the more traditional map.

–25–

V The javaTEX project & web2java

Timothy Murphy

<tim@maths.tcd.ie>

School of Mathematics, Trinity College Dublin

Summary

The general aim of the javaTEX project is to examine the relation — if any — between Java and TEX, and in particular
(as a first step) to translate the standard TEX programs (tangle , tex , mf , etc) into Java, usingweb2java — a
simple modification of the standard UnixTEX utility web2c .

1 Why Java?

Java is a dialect of C; and 95% of the code produced byweb2java is indistinguishable from C. At the same time,
Java is much safer than C; for example, run-time checking of array-bounds catches many errors that would be missed
by C.

Java is object-oriented, which is of course a Good Thing. Although in fact we have made very little use of this
— apart from hiving off a few functions (I suppose we should say “methods”!) likereset and rewrite into
TeXlib.class . But it would be nice to have a generic DVI driver which sent “messages” to an abstractprinter ,
which could be “instantiated” as a PostScript printer, a screen viewer, etc.

Java has a simple graphics interface, although again we have made no use of this to date. It might provetoosimple
for the purposes of TEX.

Java also has a simple network interface, which could prove useful in integrating TEX into WWW (the World-Wide
Web).

A theoretical advantage of Java is that it compiles into device-independent “bytecode” format, so that, for example,
tangle.class compiled on a Sun should run under Windows 95.

There remains the intriguing possibility of DVI “Applets”, as a way of putting TEX on the Web.
Against all these advantages there is at present one overwhelming disadvantage — Java is extremely slow. For

example, it takes about 40 times as long totangle tex.web in Java as it does in C. Doubtless this ratio can be
somewhat reduced by better coding; but it seems improbable that it could be improved more than four-fold.

Our hope must be that a true Java compiler will soon be available, converting Java into machine code. Since Java is
a standard programming language there seems no reason why such a compiler should not emerge; we would exect to
see one before the end of the year.

2 How web2java works

Web2java — like web2c — is a post-processor totangle . To createfoo.java from foo.web andfoo.ch
one first runstangle :

tangle foo.web foo.ch

This creates the Pascal (or pseudo-Pascal) filetangle.p .
(If you like driving in the slow lane, you could run the Java tangle instead:

java javaTeX.tangle foo.web foo.ch

Class files are supposedly machine independent, sotangle.class from the javaTEX distribution should run on any
system. Note that this file, like all javaTEX programs, is defined to be in thejavaTeX package, and so must be placed
in a subdirectory calledjavaTeX relative to theCLASSPATH.)

This file is then passed throughweb2java to createfoo.java :

foo.web + foo.ch
tangle−−−−−−→ foo.p

web2java−−−−−−−−→ foo.java .

reprinted from Baskerville Volume 6, Number 4

The javaTEX project & web2java

Actually, this is a slight oversimplification. The filecommon.defines is prepended tofoo.p beforepassing
throughweb2java . And the resulting file is passed throughjavafix.perl after web2java :

common.defines + foo.p
web2java−−−−−−−−→ |

javafix.perl−−−−−−−−−−−−→ foo.java .

All this is completely analagous toweb2c , except that we have replaced the C programfixwrites.c by the Perl
script javafix.perl .

3 Theweb2java program

The filterweb2java is created by the programsflex andbison (or lex andyacc) from the filesweb2java.l
andweb2java.y . This is completely analagous toweb2c .

The fileweb2java.l is identical toweb2c.l , with the addition of 5 new tokens:try , catch , finally , new
andcast .

The syntax description inweb2java.y has rather more changes, compared withweb2c.y .
On the plus side, since Java has no pointers all the pointer-related material has been deleted. There is no attempt

to determine if a function argument is “formal var” or not; and no need therefore to re-name functions with such
arguments.

Classes have been introduced in a rather crude way, by allowing
VARIABLE = VARIABLE ’.’ VARIABLE

Thus inMath.abs(...) Math has been defined as a variable (@define var Math;).
On the other hand, in

web_file: Data_Input_Stream;

the classDataInputStream is defined as a type (@define type DataInputStream;).
No class (so far) has appeared in both rôles, so no conflict has arisen. (An earlier version, withclass andobject

tokens, proved too complicated.)

4 Implementation

For the most part Web to Java is if anything simpler than Web to C. One apparent difficulty is the lack of a pre-
processor in Java, sinceweb2c leaves a good deal of work tocpp . This means that more must be done in the change
file, which is probably a Good Thing.

The 3 main issues which arise are:
• The absence ofgoto s in Java;
• The lack oftypedef s in Java; and
• Input/Output.

These are discussed in the following 3 subsections.

4.1 Removinggoto ’s
Java has nogoto ; Perhaps in compensation, it allowsbreak andcontinue statements to carry alabel, as for
example inbreak lab21 or continue lab3 . The corresponding labels must appear at the beginning of the loop
in question. (Abreak label can also be attached to aswitch statement, but we make no use of that.)

We implement this as follows:goto <num> or goto +<num> are converted tobreak lab , as for example

goto 6 7→ break lab6 , goto +17 7→ break lab17 .

On the other handgoto -<num> is converted tocontinue lab , as for example

goto -7 7→ continue lab7 .

Finally, goto 0 is converted tobreak :

goto 0 7→ break .

Labels of the form±<num>: are commented out:

-20: 7→ /* lab20 */ .

–27–

reprinted from Baskerville Volume 6, Number 4

As we shall see, this allows old labels to be left.
In practice, new labels are needed in virtually all cases. Here is a simple example

while n<>2 do begin
... goto done ...

end;
done: ...

Heredone is defined at the beginning of the web file:

@d done=30 {go here to exit a loop}

We alter this (in the change file, of course) to

@d Done=30 {go here to exit a loop}
@d done==+Done

and we modify the loop above to

Done: while n<>2 do begin
... goto done ...

end;
done: ...

This translates in the Pascal file to

30: while n<>2 do begin
... goto +30 ...

end;
-30: ...

@x
@<Start translation of command |o| and |goto| the appropriate label to

finish the job@>;
fin_set: @<Finish a command that either sets or puts a character, then

|goto move_right| or |done|@>;
fin_rule: @<Finish a command that either sets or puts a rule, then

|goto move_right| or |done|@>;
move_right: @<Finish a command that sets |h:=h+q|, then |goto done|@>;
show_state: @<Show the values of |ss|, |h|, |v|, |w|, |x|, |y|, |z|,

|hh|, and |vv|; then |goto done|@>;
done: if showing then print_ln(’ ’);
@y
Done: loop begin
show_state: loop begin
move_right: loop begin
fin_rule: loop begin
fin_set: loop begin
@<Start translation of command |o| and |goto| the appropriate label to

finish the job@>;
break end; @<Finish a command that either sets or puts a character, then

|goto move_right| or |done|@>;
break end; @<Finish a command that either sets or puts a rule, then

|goto move_right| or |done|@>;
break end; @<Finish a command that sets |h:=h+q|, then |goto done|@>;
break end; @<Show the values of |ss|, |h|, |v|, |w|, |x|, |y|, |z|,

|hh|, and |vv|; then |goto done|@>;
break end; if showing then print_ln(’ ’);
@z

Figure 1. Translation of targets ofgoto s indvitype.ch

–28–

The javaTEX project & web2java

and this in turn translates into the Java code
lab30: while n<>2 do begin

... break lab30 ...
end;
/* lab30: */ ...

It will be seen that in this case only one line needed to be changed, by the addition of the labelDone: .
More often, 2 lines need to be changed. The following is a typical case.

reswitch: case ch of
’x’: ... goto reswitch ...

endcases;

At the beginning of the web file we read
@d reswitch=21 {go here to start a case

statement again}
We change this to

@d Reswitch=21 {go here to start a case
statement again}

@d reswitch==-Reswitch
@d break==goto 0

Now we alter the switch statement to
Reswitch: loop begin case ch of

’x’: ... goto reswitch ...
endcases; break end;

In the Pascal code this becomes
31: loop begin case ch of

’x’: ... goto -31 ...
endcases; goto 0 end;

whichweb2java converts to
lab31: while (true) { switch(ch) {

case ’x’: ... continue lab31 ...
} break; }

In practice allgoto statements in the ‘classic’ web files can be dealt with in this way, introducing an appropriate
loop if necessary. One can imagine cases where this would be very difficult, if not impossible. Fortunately these do not
arise in practice. In fact virtually allgoto statements can be eliminated as above, by following a very small number
of practical rules.

Figure 1 is a fairly complicated case, fromdvitype.ch . Recall that the material indvitype.web between@x
and@yis replaced by the material between@yand@z.

function signed_pair:integer; {returns the next two bytes, signed}
var a,@!b:eight_bits;
begin a:=0; b:=0;
try begin a:=dvi_file.readByte; b:=dvi_file.readUnsignedByte; end;
catch (ex: IOException) EOF_dvi_file:=true;
if EOF_dvi_file then signed_pair:=0
else begin cur_loc:=cur_loc+2; signed_pair:=a*256+b; end;
end;

Figure 2. Mapping of ordinary input from file in Java

4.2 Type definitions
There are notypedef s in Java. In theory one could replacetypedef s by class definitions, but that would add
considerable complication to the code. Instead we simply change them to substitutions (as though in C changing
typedef s to#define ’s).

So for example we make the change

–29–

reprinted from Baskerville Volume 6, Number 4

@x
@<Types...@>=
@!ASCII_code=0..255;
@y
@d ASCII_code==0..255
@z

Laterweb2java will replace this range0..255 by an appropriate type (currentlyint). This entails some changes
in web2java.y , to allow ranges for procedure and function parameters, as eg in

procedure p(x:0..255);

Presently all ranges are replaced byint , since Java is rather strict about type conversion, and requires casting
where C does not.

4.3 Input/Output
On the whole, Java I/O is closer to Pascal syntax than is C. Thus

write_ln(term_out, ’value is ’, v);

in Pascal becomes

System.out.println("value is " + v);

in Java.
However, we follow web2c in leaving this translation to the post-processor — in our case the script

javafix.perl .
This Perl script looks for ‘words’ starting withjT , and deals only with these. Thus the translation above is imple-

mented through the definitions

@d term_out == System.out
@d write_ln == jT_print_ln

The only unusual feature of Java I/O is that most I/O statements must be contained in atry statement, which must
be followed by acatch statement to catch any I/O ‘errors’. However, this is perfectly straightforward, as may be seen
in figure 2, which shows an I/O function fromdvitype.ch .

For simplicity,reset andrewrite are defined in the ‘TEX library class’TeXlib.java . Thus

reset(web_file);

is replaced intangle.ch by

web_file:=TeXlib.reset(web_name);

5 Conclusions

Writing a Java change file is a straightforward exercise, following the lines suggested above.
Whether it is time well-spent is another matter! As we have said, the resulting programs are painfully slow; and the

viability of the exercise must depend on the development of true Java compilers.

5.1 Project details
All the material in the project is in the public domain, and can be retrieved by anonymous FTP from
ftp://ftp.maths.tcd.ie/pub/TeX/javaTeX . (It is hoped later to submit the programs to the CTANs.)

Any suggestions and contributions are very welcome.
A mailing list has been set up. To join this, emailmajordomo@maths.tcd.ie with the message (not heading)

subscribe javatex

The material forming the project is also available through the mailing-list. You can obtain this file, for example, by
emailingmajordomo@maths.tcd.ie with the message

get javatex javaTeX.tex

To obtain a list of available files, send the message

index javatex

For information on the working ofmajordomo send the message

help

to majordomo@maths.tcd.ie .

–30–

VI Malcolm’s Gleanings

Malcolm Clark

0.2 Ligature trivia
In theTUGboat17(2), Haralambous and Plaice, taking a slight diversion present a whole galaxy of glyphs which could
find a role in theirΩ system. In passing it is intriguing to read the following article by Richard Kinch and speculate on
the rivalries which must underlie that contribution. One of Haralambous and Plaice’s offerings are the “french ligatures
for st and ct”. I was a little startled, since I hadn’t realised that thesewere French. I’d seen them in books from 1800
in English, and, although I’ve since not been able to confirm it, I think that Eric Gill’s Joanna had them too.

By an amazing coincidence, the topic of these ligatures cropped up on thetypo-l discussion list and this stimu-
lated me to pursue a little research, from which I concluded that Sweynheym & Pannartz’ cut roman typeface in about
1467 which had the ct, and a long-st ligature. I’ll ignore the gothic faces which had as many ligatures as scribes were
used to using in hand lettering. Sweynheym & Pannartz were German and worked in Italy. Like good type design, it’s
all in the details.

0.3 TUGboat
I usually manage to make some veiled comment about the timliness ofTUGboat, but this time I am pleased to direct
your attention to aTUGboatWeb page. Try out: http://www.halcyon.com/clcook/tugclndr.htm

0.4 The classic fonts
Another discussion on thetypo-l list involved the origin of the ‘classic’ fonts which were found on the first Adobe
i.e. POSTSCRIPT laser printers. (Note I am using ‘classic’ in the same sense that a Citroën 2CV might be described
as ‘classic’—dangerous firetrap thought it undoubtedly was.) Andrew Boag pointed out that the IBM 4250 600dpi
electro-erosion printer shown at DRUPA in 1982 had Monotype hand-edited bitmap fonts which included Courier,
Helvetica (sub-licenced from Linotype), Palatino and Times NR.

David Lemon added that the basic LaserWriter fonts were selected in discussions between Adobe and Apple. A
representative from the Adobe Type group tried to keep it ‘reasonable’, but , Steve Jobs had to be talked out of including
ITC Gorilla, and ITC American Typewriter almost became the “typewriter” design, until Adobe pointed out that it is
not monospaced. When the other fonts were added some time later, Jobs had his revenge in the form of ITC Avant
Garde. Still, he was and may still be one of the most gifted computer designers of the last 20 years: he gets to screw
up in chosing fonts.

0.5 Slip between cup and lip
A while back I wrote about the proposed math handling of HTML. When the standard was published, the maths
had disappeared. Nevertheless, Dave Raggett does describe some of the markup and the hopes in his bookHTML3,
electronic publishing on the World Wide Web, Dave Raggett, Jenny Lam & Ian Alexander, Addison-Wesley. I enjoyed
the book’s informal style, though I wouldn’t wish to be seen in socks like those.

0.6 TEX lauded at Seybold
I exaggerate slightly. Conrad Taylor, writing for the Seybold Report on Publishing SystemsWhat has wysiwyg done
for us?, suggests that “most of the H & J (hyphenation and justification) algorithms in desktop publishing programs
are lamentable, particularly when compared with TEX”. We knew that, but a small accolade to that man.

0.7 TB-L
Tim Berners-Lee, creator of the World Wide Web, was recently made a Distinguished Fellow of the British Computer
Society. I was surprised that he isnot seven feet tall.

After his presentation Tim gave a talk on “The World Wide Web—Past, Present and Future”. A transcript of the
presentation is available as http://www.bcs.org.uk/news/timbl.htm

I was able to ask TB-L a little about the incorporation of HTML into the Web. I asked why he chose this way of
expressing content (rather hoping he would endorse the wisdom of separating form and content), but apparently it was
much more simple than that. People at Cern were accustomed to those little angle brackets, so he gave them something
with which they were familiar, and which was simple. Thank goodness Cern wasn’t using Wordperfect!

reprinted from Baskerville Volume 6, Number 4

http://www.halcyon.com/clcook/tugclndr.htm
http://www.bcs.org.uk/news/timbl.htm

VII TUG’96 — fun and profit in Dubna

Robin Fairbairns

Travel

I was instructed by the UK TEX Users’ Group committee to attend TUG’96 to represent the group. On a flight that
cost less than half as much as BA’s cheapest, the trip to Moscow was pretty simple. Russian immigration was tedious,
but more ominous was the requirement to fill in a form declaring how much foreign currency (and Roubles) we were
carrying, as well as the amount of ammunition and general weaponry, not to mention religious icons and the like. One
has grown used to being asked whether one is carrying weapons at thebeginningof a flight . . .

Eventually the whole of the TUG board was being led by Irina Makhovaya of CyrTUG across the airport car
park to find the minibus which was to take us to Dubna. If the ones we encountered were typical, Russian roads are
pretty awful. The forests we drove through were predominantly birch and pine (the proportions vary). The birches
have startlingly bright white bark, which catches the sun; when mixed with the pines’ dark bark, the effect is really
striking. We kept passing really fancy signs for villages, but then saw almost nothing of the villages from the road; the
sign for Dubna is a massive steel thing with DUBNA in 3-D steel letters supported on wires.

Checking into the hotel was simple; we were given little chits for each day’s breakfast, and room keys with conve-
nient bottle-openers attached. The meal in the hotel wasn’t exactly exciting, but the CyrTUG contingent invited us for
tea (in the Russian style) afterwards; we had arrived, and were feeling welcome already.

The meeting location — JINR

The Joint Institute for Nuclear Research, where the meeting was to be held, is ‘pretty near’ to the hotel, says Michel
Goossens. Actually, by Westerners’ standards, it’s a fair walk. But the centre of Dubna is spaciously laid out in the
middle of the forest, and the walk is quite pleasant. The contrast between the (relatively) modern buildings and the
beautiful trees and flowers was striking indeed.

There were 40th anniversary celebrations going on, so that there were any number of brash posters around the town,
and the hotel was teeming with Russian athletes (outnumbering the TEXies by a significant proportion: the town-centre
hotel that we were in was too expensive for many of the Russian delegates).

At the entrance to the Institute is a gate-house, manned by soldiers. On that first day, they were actually touting their
automatic rifles, but later on they accepted that we would meekly do what we were instructed to do. They checked
our passports, and lengthily, laboriously, checked that we were indeed in the list of people to be allowed in without
benefit of official passes. We were taken to the LCTA7 building where the meeting was to happen, and climbed to the
third floor (of seven) for our first TUG board meeting. After formally opening business, and agreeing an agenda, most
of us were dragged off to Vladimir Korenkov’s office to be interviewed by local TV. I had determined to be brief (I
didn’t have much of a voice at the time), but Michel and Korenkov spoke for what seemed an unconscionably long
time (in Russian). How much of this interminable interview made it to air I don’t know: I would like to think my small
contribution made it, because I was wearing my research group’s T-shirt. . .

For lunch, we went to the Institute’s canteen, and learnt how the other half live: the food wasn’t terribly classy, but
it was extremely cheap (when the conference proper started, we had a separate area with a fixed menu: we weren’t told
how much this cost).

Dubna is on the banks of the Volga (it’s actually near the confluence of the Dubna river with the Volga, and takes
its name from the smaller river). On the Friday evening we had dinner in the hotel and wandered off to watch the sun
setting over the river; we then discovered the intriguing Pelikan bar — a plastic tent with a refrigerator and a rather
loud hi-fi system; it was the nearest place we discovered that sold Russian (as opposed to imported) beer.

7Laboratory of Computer Techniques and Automation

reprinted from Baskerville Volume 6, Number 4

TUG’96 — fun and profit in Dubna

The Conference

Our Saturday was spent mostly indoors, in board meetings, eating, and variously milling around. Then, in the early
evening registration started, and we received our pack of conference stuff, including a TUG’96 mug, with that curious
accordion-playing Russian lion on it. No T-shirts on offer, though: we’re told that Russians don’t go for them, and so
they didn’t occur to the organising committee.

Once registration was well under way, there was a little tea-party. Russians say (we’re told) “you can have too much
Vodka; you can’t have enough tea”. The Russian method of preparing tea grows on one — I might even feel moved to
use it myself: the Samovar is a much simpler object than I’d ever imagined, and can easily be substituted by a simple
kettle. After tea, we continue the board meeting by the Volga, amid crowds of people enjoying the evening sunshine.

On Sunday morning, we have the “opening ceremony” of the conference. This consists of a series of grand speeches
(many of them in Russian, translated for us ignorant foreigners). We had an intriguing history (in English) of the
institute, which was curiously old-fashioned in tone “the biggest. . . the first. . . the highest flux. . . ”. The fuel rods
in one of their reactors stay there for 10 years!

In this abbreviated account, only a few of the more striking papers get covered. . .

• Yannis Haralambous gave us one of his perorations, this time on ligatures in Arabic. Yannis issoerudite, but when
he goes off on one of these tacks about the æsthetics of typesetting it’s hard to keep up with him (though I find him
totally fascinating).
• Karel Piska (who says he’s a sort of “collector of alphabets”) spoke about the usage of Cyrillic alphabets, the paths

through which they came to it, and the problems that arise from their slightly different treatment of the alphabet
itself.
• Sergei Znamenskii discussed the issues arising from the different standard encodings in use for Cyrillic throughout

Russia. This was a repeating issue for the conference; how does one exchange information between systems, given
that there are all these different encodings in use. The normal ones are KOI-8 (the ‘8’ being pronounced in Russian
as ‘vosyem’: a standard from the ‘old days’), ISO 8859-5, and two Microsoft code pages. Reading a file written
in one code as if it were in another can often produce apartly sensible result, but it’s obviously never going to be
acceptable.
• Jörg Knappen spoke on his latest version of the DC fonts, pushing his message of stability in advance of the release

of the final ‘EC’ version8. He also discussed the text companion fonts, which contain symbols whose appearance
should reasonably change to match the surrounding text font. Jörg requested samples for additional symbols for
these TC fonts.
• Jörg also presented Fukui Rei’s paper on the new TIPA phonetic fonts: an impressive piece of work, with accom-

panying macros that permit straightforward use. Rei’s encoding has been adopted as a LATEX standard (T3).
• Olga Lapko spoke about the encoding problems that confront the font-designer who aims to support Cyrillic; the

background to the problem is the vast range of languages that Cyrillic covers, another aspect of the subject that
Karel Piska was addressing.

Monday, and how not to chair a session

Monday was the one appearance I made on the podium. This could have been difficult (I had no voice) but I could
make myself understood by using the microphone. The session was thrown into complete confusion because I had an
incorrect version of the session timetable (I never found out why), with more time allowed for Yannis Haralambous
(on his new fonts) and less allowed for Richard Kinch (on Unicode encoding issues) than either was expecting. So I
had to extemporise a short discussion period at the end of the session, on encodings. This discussion didn’t really get
off the ground; I had noted several questions I wanted to ask of the morning’s speakers, but no-one else (apparently)
had done so. And when I had asked all my questions and had answers to them, the session (sort of) dried up. . .

The afternoon was rounded off by the TUG business meeting, at the start of which Jörg Knappen led a group of
Russians out, to discuss the planned LATEX T2 encoding for Cyrillic. (This was the one major question I had failed to
get under way in my extempore discussion session.) Michel’s presentation seemed to go down reasonably well with
the members, and there was some discussion, but it was curtailed by an urgent summons to the canteen for dinner.

And so back to the hotel, whence to the Pelikan for a beer to drink by the banks of the Volga, finding and skimming
stones (there are rather few stones of any sort, let along flat ones, since it’s not a sea shore, for all its sandiness). And

8Which has since been released

–33–

reprinted from Baskerville Volume 6, Number 4

when the sun’s set too far to continue, back to the Pelikan to sit with a group of other delegates, drink a final beer, and
shout conversations over the loud music and to the accompaniment of a drunken dancer who occasionally lunged at
people in a sort of conversational way (and invariably missed).

Sergiev Posad — thebig trip

Tuesday morning’s session was short (and I was late for it, having been told the first speaker hadn’t arrived). Laurent
Siebenman was speaking when I arrived about the concept of using DVI as a document distribution medium, but of
course I missed some of his reasoning. I’m sceptical.

Then off to a slightly-hurried early lunch and thence to Sergiev Posad by bus. It’s a major centre of the Russian
Orthodox Church, including a monastery, a seminary, etc. Our tour took in three ‘cathedrals’ and a museum which
included some beautiful illuminated manuscript books.

Our journey back was far from smooth — a startlingly loud puncture delaayed us for ages. But when we got back
to the hotel, we found that a call has gone ahead of us to JINR, and our dinner has been put in huge pots and brought
to the hotel. We ate it as a picnic on a bit of meadow land between the hotel and the Volga.

And how do you follow that?

The Wednesday morning started withtwopapers from Kees van der Laan: I never know what to make of this man. . .
The first paper is on how to do (what seem to me) trivial graphics in TEX (native) using the good old ‘turtle’ model.

This is fun, but isn’t taking us anywhere much: who gets to using TEX when they’re still of an age to need turtle
graphics? (Native) graphics in TEX are a problem, but there are reasonable solutions in a variety of areas, and almost
anyone nowadays will go to encapsulated PostScript for anything of any significance.

Kees’ second paper develops from one single idea: that of doingMETAFONT (or META O T) graphics in three
dimensions and imposing a projection transformation at a late stage. This is neat, but he doesn’t seem to be thinking
of anything but decorative effects.

The rest of the morning (after the coffee break) is taken up with two new PDF-related projects. The first presen-
tation, of TEX2PDF9 is by Petr Sojka. TEX2PDF provides an alternative output mechanism (as a change file on the
sources) which creates PDF output in place of DVI. This is, of course, theright way to do a hypertext-ish output;
hypertext inevitably suffers from the same problems of context as the colour package, which we’re familiar with from
David Carlisle’s accounts. Knuth spoke at TUG’95 of his surprise that so few people have used TEX as the basis for
radical modification; Sojka has taken him at his word, and it was pleasing to hear that Knuth had approved of the work
when he visited Brno earlier in 1996.

The second presentation was from Sergei Lesenko, who is the original author of the partial Type 1 font downloading
code that appears in the latest alpha-testdvips. Lesenko is developing advi2pdf, based on the code ofdvips. As I
explained above, this isn’treally the ‘right’ way to do the job (any more than the established TEX – dvips – repere –
Distiller), but one can imagine it ‘catching on’ more quickly than TEX2PDF, simply because of the world’s entirely
justifiable reliance on the stability of TEX itself.

Neither of these projects is complete, and neither could be accepted with their present specifications even if com-
plete:

• the precise nature of Sojka and Thanh’s new primitives wasn’t clear, but whatwasclear didn’t please many, and
• Lesenko’s\special commands don’t conform to the HyperTEX conventions, nor does their syntax look like that

defined by the TWG on device driver standards.

Nevertheless, I take heart from the fact that substantial new projects continue to spring up in our cosy little TEX world!
In the afternoon we had a trip to a neighbouring town called Kimri, to visit the town museum. The bus again

collected us from the institute, but by the time we arrived at the gate, the rain was beginning to be serious, and we had
to get out and file through the gate-house so that the bus could be ‘checked’ (an operation that, naturally, took rather
little time . . .). The road took us out of Dubnaunderthe Moscow-Volga canal, past an enormous statue of Lenin and
then along the top of the dam that makes the “man-made (Moscow) sea” which (as I understand it) is on the Volga. By
the time we arrived at Kimri, getting from bus to museum was an occasion to sprint through huge puddles.

On the way back to the institute for dinner, the weather is more terrible still. The bus driver agreed to wait (for no
longer than 20 minutes) while we ate our meal, which meant that we got a lot less wet than we might otherwise expect.

9See the paper elsewhere in this issue

–34–

TUG’96 — fun and profit in Dubna

The guards weren’t playing: we had to get out and show our passes and passports, filing through the pouring rain, on
the way in, and again on the way out. The brilliant arrangement this time was to spend significant time ‘checking’ the
bus, so that the guard house became packed and the (real) workers at the institute couldn’t go home from work on their
bicycles.

So to the hotel, and to Irina Makhovaya’s birthday party in her hotel room. Wow! — food, drink, toasts, all flowing
freely until (after three hours) tea arrived with the inevitable Samovar. Lots of tea and then dancing, until (at midnight)
someone said we shouldn’t have music in the hotel after 11 p.m. So out to dance in the open air to the sound of the tape
player in Professor Pankratiev’s car. Until about 1.30 a.m., when the military police arrived: they wanted to impound
the car and arrest the Professor. A slight dampener on the enthusiasm for dancing (Richard Kinch disappeared into the
undergrowth), but the Russian women present pled with the police (in relays). Eventually the word came that we are to
move the car about 5 metres back so that it’sthisside of the ‘No entry’ sign. . . and a little while later, Pankratiev was
no longer in jeopardy. Eventually the police go away (and Richard reappears!). When I left (after 2 a.m.), the dancing
was still in full swing; I’ve demonstrated to myself that even free-flowing Vodka doesn’t make me a competent dancer!

The last day

The conference itself was scheduled to finish on Thursday 1st; the morning session was to be papers (as normal), then
a closing ceremony.

Andrei Slepukhin swapped places with Kees van der Laan, so that Yannis Haralambous (who was leaving early)
could hear Slepukhin’s ideas on multilingual processing. Slepukhin may have a point, but if he does, he seems me to
miss it himself; on the whole, I need to read a paper (there wasn’t one, even in the pre-prints). Michel Goossens re-did
(and still further extended) his talk about LATEX↔HTML.

Then after coffee Kees van der Laan (again) talked about his BLUe’s format; Kees is a polished presenter, but I
remain unconvinced. More unconvincing still was Astrelin, who was (as far as one could tell) talking about a C++
class library implementing a few rather trivial graphics functions together with some serious unresolved research
issues. Until Pankratiev10 spoke a little later, there was no context whatever for Astrelin’s work; Pankratiev’s project
is putting together a standard harness for the use of TEX throughout Russia, and Astrelin’s work is a small part of it.
Between Astrelin and Pankratiev, though, was another piece of solid down-to-earth stuff from Berdnikov’s group —
not exactly earth-shattering, but plainly addressing real needs of their user community. I was impressed by all three
papers that came out of Berdnikov’s group.

Then we had our closing ceremony. We had asked for nominations for the Cathy Booth prize, on the basis of “what
would affect your work most in the next year”. I was sure that either Sojka or Lesenko should get the prize; in the
event Lesenko’s showing was poor, while Sojka was the clear winner. However, since Sojka had a prize last year, and
since the prizes we had on offer were rather infra-dig for him anyway (for example, as president of CS-TUG, he gets
that group’s complimentary copy ofBaskerville), he accepted the prize on behalf of his student Han The Thanh. The
top prize awarded by TUG was to Berdnikov as representative of his group. Well-deserved, as I said; solid down-to-
earth work. CyrTUG gave Michel Goossens a big book (presumably about Russia — all I could see was that it was in
Russian).

Then after another rather rapid lunch we went off to the bank of the Volga, just up the path from the hotel, to
catch the boat for our picnic trip. Beautiful weather, the sort of boat that plies many a Western river with a lot more
passengers, so one could walk around and talk without inconveniencing one’s fellows, and a leisurely trip up the Volga
to somewhere that wasn’t identified (to me, at least), where we turned around and sailed back down again. It’s hard
to give a clear picture of this trip. I took a lot of photographs of the assembled TEXies; Olga Grineva (of Berdnikov’s
group) went round and collected signatures from every participant on the back of her copy of the group photograph of
the conference.

Two things, off our boat, stick in the mind. The first is the perfectly ordinary idyll of a camp-site in amongst the
trees on the banks of the river; people enjoying a holiday, with a canoe and a perfect beach to swim from. The second
is the totally incomprehensible old man who was wandering around a vast barge as it chugged along in the opposite
direction to us, stopping from time to time at one or the other of the piles of sand on the barge and tipping a shovelful
of the sand into the river.

And eventually we had come back to the confluence of the Dubna river with the Volga, where we turned up the
Dubna for a short way to a picnic site at Ratmino. A fantastic spread was set out for us — food a-plenty and masses of

10Whose talk came as a surprise, as it too hadn’t made it to my copy of the programme

–35–

reprinted from Baskerville Volume 6, Number 4

booze. We all tuck in, and then realise that they’ve got huge barbecues running, and we’re being offered shashliki —
huge metal skewers with giant lumps of lamb on them. Ofcoursethere was a speech or two, and as a result there were
toasts. We only had plastic mugs to toast with, and they don’t ‘chink’. . . A small group struck up folk singing, others
just talked and enjoyed the early evening.

Moscow, and the end of the party

Friday was a trip to Moscow which combined a tour with dropping people off for their travel home. The bus turned
off into Sheremetevo (2: the international airport), and we said good bye to the first bunch. Then we went into the
centre of the city and met a guide, strikingly dressed to look like a cross between a cartoon bee and a Latin-American
slinky dancer. We went to Red Square, and observed the outside of Lenin’s mausoleum, of St. Basil’s (extraordinary)
Cathedral and, of course, the Kremlin. Then back to the bus and a long drive around the city, where we were for ever
seeing ‘panoramas’ of this, that or the other. There were striking things in all this, like the cathedral being rebuilt in
the shell of the swimming pool that replaced the original cathedral on the site, and like the beautiful old houses that
have survived since the rebuilding of the city after Napoleon’s devastation in 1812.

After a stop at a touristy-shop, we climbed the Lenin Hills (the promontory on which Moscow University stands),
dropped a few people off, and then stopped for what I would call areal panorama of the city. The ski-jumps up here
are (strangely) on the itinerary of newly-weds, who climb the rickety iron steps in their finery to look out over city
from a better vantage point still. Then on to the war memorial that was dedicated in 1995 in remembrance of the
of the 1941–45 war. This is a most astounding piece of architecture, achieving a dignity that one doesn’t, somehow,
expect. The arrays of fountains were spectacular; the singing in the memorial church was wonderful, the sculpture was
striking. I loved it.

But at the end of that little tour, the party started breaking up in earnest, and within the hour there was almost no-one
left on the bus.

1 1995/96 Accounts

Accounts for the period 1st August 1995 to 31st August 1996

–36–

TUG’96 — fun and profit in Dubna

INCOME

Membership Income
1995 TUG Subscriptions 32.50

1996 TUG Subscriptions 3244.00

1995 UKTUG Subscriptions 58.00

1996 UKTUG Subscriptions 2827.00

EmTEX/OzTEX Subs 165.00

EmTEX/OzTEX New Subs 355.00

Handling 255.50

Inv Charges 55.00

CD Services
4AllTEX CD ROM 1719.37

UNIX CD Rom 477.24

Book sales
Book sales 405.98

EDMAC book 76.00

Group Meetings
20/3/96 Meeting 745.00

LATEX3 48012.89

Miscellaneous
Bursary 95.04

General 404.64

Bank Interest 655.30

High Int A/C Interest 497.96

TOTAL 60081.42

–37–

EXPENDITURE

Membership Services
Discs 445.48

Books 536.12

Baskerville 1622.98

CD Roms 48.40

Member 79.12

UNIX CD Rom 1000.00

Meetings (inc committee)
1/4/95 245.00

1/6/95 298.70

18/10/95 213.08

25/1/96 120.80

15/2/96 60.21

20/3/96 144.40

9/5/96 90.56

LATEX3 16318.53

Miscellaneous
Bank Charges 2.00

General 1155.35

EuroTEX 220.00

Dubna 305.69

T Shirts 218.75

TOTAL 23125.17

Bank Assets
UKTUG Funds 16756.24

TUG Funds 3244.00

LATEX3 38005.83
Peter Abbott, Honorary Treasurer

VIII The UK T EX Users’ Group

The 1995–96 UKTUG committee

R. Fairbairns Chair

P. Abbott Treasurer and

Membership Secretary

D. P. Carlisle Committee Secretary

M. Clark Meetings Secretary
K. Bazargan; S. P. Q. Rahtz; M. D. Wooding.

Book Discounts for UKTUG members

We have arrangements with Addison-Wesley for their well-known TEX-related publications, and with International
Thomson Publishing to supply any of the very excellent O’Reilly & Associates Inc. series of books to members.

The agreed list of books, together with the discounted (at least 20%) price, is distributed occasionally with
Baskerville, but is always available from the Treasurer, Peter Abbott. The quoted price includes the cost of postage
and packing.

We are only allowed to offer this service tocurrent members of the UK TEX Users’ Group and/or members of
TUG. Please send your order and cheque (in UK £) to Peter Abbott (address inBaskervillemasthead). Make cheques
payable to ‘UKTUG’ please. Books from Addison-Wesley are delivered direct but books from O’Reilly will be routed
through UKTUG.In all casesplease notify Peter Abbott by email, phone, fax or letter when books are delivered. This
service is unfortunately not a speedy process

reprinted from Baskerville Volume 6, Number 4

IX Obtaining TEX

edited by Peter Abbott

From the network – CTAN
The UK TEX Archive onftp.tex.ac.uk is part of the CTAN (Comprehensive TEX Archive Network) collaborat-
ing network of archives on the Internet organised by the TEX Users Group.

The CTAN archives run an enhancedftp server which supports dynamic compression, uncompression, and archive
creation options. Fetch the top-level fileREADME.archive-features for information. The server also supports
site-defined commands to assist you. Please readREADME.site-commands for a brief overview.

Please report any problems with CTAN archives via email toctan@urz.Uni-Heidelberg.de .
The main directories which make up CTAN are listed below; readers are referred to Graham Williams’TEX and

LATEX Cataloguewhich is available from CTAN ashelp/Catalogue/catalogue.html

biblio bibliography-related files, such as BIBTEX.
digests back issues of TEX-related periodicals
dviware contains the variousdvi -to-whatever filters and drivers
fonts fonts, both sources and pre-compiled
graphics utilities and macros related to graphics
help overviews of the archive and the TEX system
info files and tutorials which document various aspects of TEX
indexing utilities and related files for indexing
language material for typesetting non-English documents
macros macros packages for TEX and style files
support programs which can be used in support of TEX
systems complete system setups, organized by operating system
tools the various archiving tools used on CTAN
web contains WEB-related files and utilities

Unix – CD-ROM
GUTenberg and UKTUG, in collaboration with TUG and NTG, have produced a plug-and-play CD-ROM based on
Thomas Esser’s teTEX distribution. As it uses the ISO 9660 standard, the platform-independent files can, in principle,
be read on all operating systems which are compatible with that format.

Unix executables for the following platform/operating system combinations are included: Digital alpha-osf (2.0 and
3.2), Hewlett Packard hpux (9.01 and 10.01), Intel i386 bsdi2.0, freebsd (2.0.5 and 2.1.0) netbsd (1.0 and 1.1), Intel
i486 (linux and linuxaout), m68k (linux, linuxoldld, and nextstep3), mips (irix 5.2, 5.3 and ultrix4.4) IBM RS6000
(aix3.2 and aix4.1.1) Sparc Solaris (2.4 and 2.5) and Sunos 4.1.3.

For full details see the article inBaskerville6.2.
The CD is available to members of TEX user groups at £15 and to non-members at £25. Order the disk from Peter

Abbott; see the section ‘PC and Mac disks’ for details.

DOS – CD-ROM
UKTUG distributes the comprehensive 4AllTEX CD-ROM, created by the Dutch TEX Users’ Group (NTG), now in
its 3rd edition. This costs £25 for 2 CDs, and is for DOS users.

PC and Mac disks
The UKTUG distributes an emTEX kit for PCs, and an OzTEX kit for Macintosh. The cost covers copying and postage
costs, together with the shareware fee for OzTEX (and other Mac programs) and Eddi4TEX. Each set costs £30, and
is available from Peter Abbott, 1 Eymore Close, Selly Oak, Birmingham B29 4LB. Cheques must be payable to
‘UKTUG’. Please note that this serviceis available to UKTUG members only.Each set comes with an installation
guide, and (at least) full TEX and METAFONT, a previewer, a PostScript driver, and CM fonts. Two update disks a
year will be sent out automatically, with the current version of LATEX 2ε, and other goodies. A subscription service is

reprinted from Baskerville Volume 6, Number 4

	Editorial
	`Post Editorial'
	The Joy of TeX2textsc {PDF}---Acrobatics with an Alternative to textsc {DVI} Format
	Motivation
	Formats for Electronic Document Delivery
	DVI Format
	Portable Document Format
	SGML

	Current Possibilities for Producing PDF from TeX
	The Name of the Game
	New primitives
	Font handling
	Compression
	Graphics
	Implementation

	Pros and Cons
	Object Reuse
	Future Work

	LaTeX, textsf {dvips}, textsc {EPS} and the web ldots
	What and why is textsc {EPS}?
	What about texttt {dvi} to Encapsulated PostScript?
	LaTeX to textsc {EPS} to textsc {GIF} to Web

	Newsletters with LaTeX
	Text Columns
	Short Articles
	Graphics
	Starting Articles
	Page Breaks
	Typefaces

	An introduction to PSTricks, part 4
	Data plotting
	PST programming examples

	The javaTeX project & texttt {web2java}
	Why Java?
	How texttt {web2java} works
	The texttt {web2java} program
	Implementation
	Removing texttt {goto}'s
	Type definitions
	Input/Output

	Conclusions
	Project details

	Malcolm's Gleanings
	Ligature trivia
	emph {TUGboat}
	The classic fonts
	Slip between cup and lip
	TeX lauded at Seybold
	TB-L
	textsc {TUG}'96unskip penalty @M hskip 0.16667emrelax ---hskip 0.16667emrelax ignorespaces fun and profit in Dubna
	1995/96 Accounts
	The UK TeX Users' Group
	Obtaining TeX

